Plasma surface treatment of aluminum nanoparticles for energetic material applications

Kelsea K. Miller, Jennifer L. Gottfried, Scott D. Walck, Michelle L. Pantoya, Chi Chin Wu

Research output: Contribution to journalArticlepeer-review

21 Scopus citations


Aluminum nanoparticles (nAl)have great potential for energetic applications. However, the native oxide shell (amorphous alumina, Al2O3)inhibits efficient energy release and acts as a barrier for aluminum (Al)oxidation. An energetic oxidizer, aluminum iodate hexahydrate (AIH), has recently been demonstrated as an effective coating for nAl. However, the current chemical synthesis method has led to widely varying AIH concentrations on nAl particles. Plasma surface treatment of nAl is a novel “energy coupled to material” technique which alters the nAl surface properties without changing the bulk active Al core. This work explores a new approach to engineering the nAl surface using atmospheric argon (Ar)plasma to accomplish two objectives: (1)reduce the nAl oxide shell thickness, and (2)synthesize AIH on the treated particle surface. Transmission electron microscopy (TEM)reveals more than 40% reduction in the oxide thickness after 10 min Ar plasma treatment. Laser-induced air shock from energetic materials (LASEM)experiments show significant energy release enhancements for the plasma-treated nAl with AIH coating (PT-nAl-AIH)compared to commercial nAl as well as untreated nAl with AIH coating (UT-nAl-AIH). The results demonstrate the potential of applying atmospheric plasma techniques to modify nAl for enhanced reactivity.

Original languageEnglish
Pages (from-to)211-213
Number of pages3
JournalCombustion and Flame
StatePublished - Aug 2019


Dive into the research topics of 'Plasma surface treatment of aluminum nanoparticles for energetic material applications'. Together they form a unique fingerprint.

Cite this