TY - JOUR
T1 - Performance of dowel bar retrofit projects in Texas
AU - Chen, Dar Hao
AU - Won, Moon
AU - Zha, Xudong
PY - 2008
Y1 - 2008
N2 - In Texas, many miles of plain jointed concrete pavement (JCP) were constructed without proper load transfer devices such as dowels. After a number of years of service, some JCP sections without dowels showed distresses in the form of faulting at transverse joints. Some of the sections were designed in accordance with the AASHTO 1986 Guide, which required 50-75 mm thicker slabs in exchange for not using dowels. This pavement design did not work, with faulting at transverse joints that cause poor ride. Dowel bar retrofit (DBR) was performed on four projects to restore the pavement condition. Overall, DBR restored load transfer efficiency and resulted in improvement of ride quality. Even where the subbase stiffness is 5-10 times less than the minimum value required for proper performance of JCPs, properly installed DBR effectively restored pavement condition with minimum faulting after decades of service. Therefore, it indicated that DBR is able to minimize the faulting even where there is poor base/subgrade support. This is significant in that there are no effective and practical methods to improve subbase conditions in existing concrete pavement, whereas DBR can restore pavement conditions at a reasonable cost. However, not all DBR projects were successful. In one DBR project, faulting in the range of 6.4-9.5 mm occurred after less than 2 years of treatment. Forensic investigation revealed voids under the dowel bars, which indicates poor consolidation of the grout material. Efforts are currently underway in TxDOT to improve specifications for grout materials and DBR construction.
AB - In Texas, many miles of plain jointed concrete pavement (JCP) were constructed without proper load transfer devices such as dowels. After a number of years of service, some JCP sections without dowels showed distresses in the form of faulting at transverse joints. Some of the sections were designed in accordance with the AASHTO 1986 Guide, which required 50-75 mm thicker slabs in exchange for not using dowels. This pavement design did not work, with faulting at transverse joints that cause poor ride. Dowel bar retrofit (DBR) was performed on four projects to restore the pavement condition. Overall, DBR restored load transfer efficiency and resulted in improvement of ride quality. Even where the subbase stiffness is 5-10 times less than the minimum value required for proper performance of JCPs, properly installed DBR effectively restored pavement condition with minimum faulting after decades of service. Therefore, it indicated that DBR is able to minimize the faulting even where there is poor base/subgrade support. This is significant in that there are no effective and practical methods to improve subbase conditions in existing concrete pavement, whereas DBR can restore pavement conditions at a reasonable cost. However, not all DBR projects were successful. In one DBR project, faulting in the range of 6.4-9.5 mm occurred after less than 2 years of treatment. Forensic investigation revealed voids under the dowel bars, which indicates poor consolidation of the grout material. Efforts are currently underway in TxDOT to improve specifications for grout materials and DBR construction.
KW - Bars
KW - Concrete pavements
KW - Dowels
KW - Load transfer
KW - Rehabilitation
KW - Texas
UR - http://www.scopus.com/inward/record.url?scp=44149113294&partnerID=8YFLogxK
U2 - 10.1061/(ASCE)0887-3828(2008)22:3(162)
DO - 10.1061/(ASCE)0887-3828(2008)22:3(162)
M3 - Article
AN - SCOPUS:44149113294
SN - 0887-3828
VL - 22
SP - 162
EP - 170
JO - Journal of Performance of Constructed Facilities
JF - Journal of Performance of Constructed Facilities
IS - 3
ER -