Numerical modeling of solar thermo-chemical water-splitting reactor

Darryl L. James, Nathan P. Siegel, Richard B. Diver, Barry D. Boughton, Roy E. Hogan

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

21 Scopus citations

Abstract

Production of hydrogen using solar thermal energy has the potential to be a viable alternative to other hydrogen production methods, typically fossil-fuel driven processes. Thermochemical reactions for splitting water require high temperatures to operate effectively, for which solar is well-suited. Numerical modeling to investigate the concept of a solar-driven reactor for splitting water is presented in detail in this paper for an innovative reactor, known as the "counter-rotating-ring receiver/reactor/recuperator" (CR5) solar thermochemical heat engine that is presently under development. In this paper, details of numerical simulations predicting the thermal/fluid behavior of the innovative solar-driven thermo-chemical reactor are described in detail. These scoping calculations have been used to provide insight into the thermal behavior of the counter-rotating reactor rings and to assess the degree of flow control required for the CR5 concept.

Original languageEnglish
Title of host publicationAmerican Solar Energy Society - Solar 2006
Subtitle of host publication35th ASES Annual Conf., 31st ASES National Passive Solar Conf., 1st ASES Policy and Marketing Conf., ASME Solar Energy Division Int. Solar Energy Conference
Pages1217-1223
Number of pages7
StatePublished - 2006
EventSolar 2006: Renewable Energy - Key to Climate Recovery, Including 35th ASES Annual Conference, 31st ASES National Passive Solar Conference, 1st ASES Policy and Marketing Conference and ASME Solar Energy Division International Solar Energy Conference - Denver, CO, United States
Duration: Jul 9 2006Jul 13 2006

Publication series

NameAmerican Solar Energy Society - Solar 2006: 35th ASES Annual Conf., 31st ASES National Passive Solar Conf., 1st ASES Policy and Marketing Conf., ASME Solar Energy Division Int. Solar Energy Conference
Volume3

Conference

ConferenceSolar 2006: Renewable Energy - Key to Climate Recovery, Including 35th ASES Annual Conference, 31st ASES National Passive Solar Conference, 1st ASES Policy and Marketing Conference and ASME Solar Energy Division International Solar Energy Conference
Country/TerritoryUnited States
CityDenver, CO
Period07/9/0607/13/06

Fingerprint

Dive into the research topics of 'Numerical modeling of solar thermo-chemical water-splitting reactor'. Together they form a unique fingerprint.

Cite this