Novel corresponding-states principle approach for the equation of state of isotopologues: H218O as an example

V. B. Polyakov, J. Horita, D. R. Cole, A. A. Chialvo

Research output: Contribution to journalArticle

9 Scopus citations

Abstract

The corresponding-states principle (CSP) has been considered for the development of the equations of state (EOS) of minor isotopologues that are usually unknown. We demonstrate that, for isotopologues of a given molecular fluid, a general extended multi-parameter corresponding-states EOS can be reduced to the three-parameter EOS, utilizing the critical parameters (temperature and density) and Pitzer's acentric factor as correlation parameters. Appropriate general CSP mathematical formalism and equations for constructing the EOS of minor isotopologues are described in detail. The formalism and equations were applied to isotopologues of water and demonstrated that the isotopic effect on the critical parameters and the acentric factor of H218O can be successfully calculated from the EOS of H2O and experimental data on the isotope effects (liquid-vapor isotope fractionation factor and molar volume isotope effect). We have also shown that the experimental data on the vapor pressure isotope effect (VPIE) for 18O-substituted water are inconsistent within the framework of thermodynamics with the liquid-vapor oxygen isotope fractionation factor. The novel approach of CSP to isotopologues developed in this study creates a new opportunity for constructing the EOS of minor isotopologues for many other molecular fluids.

Original languageEnglish
Pages (from-to)393-401
Number of pages9
JournalJournal of Physical Chemistry B
Volume111
Issue number2
DOIs
StatePublished - Jan 18 2007

Fingerprint Dive into the research topics of 'Novel corresponding-states principle approach for the equation of state of isotopologues: H<sub>2</sub><sup>18</sup>O as an example'. Together they form a unique fingerprint.

  • Cite this