Nonlinear aeroelastic effects in damaged composite aerospace structures

O. A. Bauchau, H. C. Zhang, R. G. Loewy, S. N. Atluri

Research output: Contribution to conferencePaperpeer-review

3 Scopus citations


This paper focuses on the effect of matrix microcracking on the aeroelastic behavior of elastically tailored wings. Matrix microcracking is shown to give rise to nonlinear material constitutive laws in the presence of non uniformly distributed crack densities. Such matrix damage is found to have little effect on flutter speed. The aeroelastic response of wings with matrix microcracking is qualitatively similar to that of an undamaged wing. However, the amplitude of the aeroelastic oscillations can be significantly higher for wings with microcracking. Root vibratory stresses could double in such beams, possibly resulting in significant fatigue life degradation. The aeroelastic response to a sharp edged gust for wings with one lay-up configuration was found qualitatively similar for wings without and with microcracking, though significantly higher vibration levels were observed in the microcracked beam. For another lay-up, a sharp qualitative difference exists for the damaged wing: large amplitude, undamped aeroelastic oscillations typical of a limit cycle behavior were observed. This limit cycle bevavior seems to disappear at lower air speeds.

Original languageEnglish
StatePublished - 1997
Event35th Aerospace Sciences Meeting and Exhibit, 1997 - Reno, United States
Duration: Jan 6 1997Jan 9 1997


Conference35th Aerospace Sciences Meeting and Exhibit, 1997
Country/TerritoryUnited States


Dive into the research topics of 'Nonlinear aeroelastic effects in damaged composite aerospace structures'. Together they form a unique fingerprint.

Cite this