New developments on the p-willmore energy of surfaces

Research output: Contribution to journalArticlepeer-review

Abstract

The p-Willmore energy Wp, which extends the venerable Willmore energy by accommodating different powers of the mean curvature in its integrand, is a relevant geometric functional that bears both similarities and differences to its namesake. To elucidate this, some recent results in this area are surveyed. In particular, the first and second variations of Wp are given, and a flux formula is presented which reveals a connection between its critical points and the minimal surfaces. Finally, a model for the p-Willmore flow of graphs is presented, and this connection is visualized through computer implementation.

Original languageEnglish
Pages (from-to)57-65
Number of pages9
JournalGeometry, Integrability and Quantization
Volume21
DOIs
StatePublished - 2020

Keywords

  • Curvature functionals
  • Minimal surfaces
  • Willmore energy
  • Willmore flow

Fingerprint Dive into the research topics of 'New developments on the p-willmore energy of surfaces'. Together they form a unique fingerprint.

Cite this