TY - JOUR
T1 - Neural network based optimizing controllers for smart structural systems
AU - Damle, Rajendra
AU - Rao, Vittal
N1 - Copyright:
Copyright 2011 Elsevier B.V., All rights reserved.
PY - 1998/2
Y1 - 1998/2
N2 - Neural network based controllers for vibration suppression of smart structural systems have been reported in several recent studies. These studies have shown that in addition to conventional conntroller design methodologies, neural networks offer an effective basis for design and implementation of controllers. With the introduction of neural network chips like the electronically trainable analog neural network (ETANN) chip i80170NX by Intel and the Ni1000 chip by Nestor Corp., stand-alone hardware implementation of neural network based controllers is possible. In this paper the capapbilities of Intel's ETANN chip to implement linear and nonlinear controllers for smart structural systems have been investigated. A neural network based optimizing controller design methodology that integrates the ETANN chip and its capabilities of on-line adptation has been developed. A priori information on the smart structural systems such as actuator/sensor bandwidth limits and control effort limits can be directly accommodated in this method. Simulation studies of the performance of a closed loop time varying linear and nonlinear system have also been presented with and without on-line adaptation.
AB - Neural network based controllers for vibration suppression of smart structural systems have been reported in several recent studies. These studies have shown that in addition to conventional conntroller design methodologies, neural networks offer an effective basis for design and implementation of controllers. With the introduction of neural network chips like the electronically trainable analog neural network (ETANN) chip i80170NX by Intel and the Ni1000 chip by Nestor Corp., stand-alone hardware implementation of neural network based controllers is possible. In this paper the capapbilities of Intel's ETANN chip to implement linear and nonlinear controllers for smart structural systems have been investigated. A neural network based optimizing controller design methodology that integrates the ETANN chip and its capabilities of on-line adptation has been developed. A priori information on the smart structural systems such as actuator/sensor bandwidth limits and control effort limits can be directly accommodated in this method. Simulation studies of the performance of a closed loop time varying linear and nonlinear system have also been presented with and without on-line adaptation.
UR - http://www.scopus.com/inward/record.url?scp=0031997252&partnerID=8YFLogxK
U2 - 10.1088/0964-1726/7/1/004
DO - 10.1088/0964-1726/7/1/004
M3 - Article
AN - SCOPUS:0031997252
VL - 7
SP - 23
EP - 30
JO - Smart Materials and Structures
JF - Smart Materials and Structures
SN - 0964-1726
IS - 1
ER -