Natural frequencies of shear deformable rhombic plates with clamped and simply supported edges

O. G. Mcgee, W. D. Graves, T. S. Butalia

Research output: Contribution to journalArticlepeer-review

11 Scopus citations

Abstract

The natural vibrations of thick and thin rhombic plates with clamped and simply supported edges are analyzed, using assemblages of nine-node Lagrangian isoparametric quadrilateral C0 continuous finite elements based on a higher-order shear deformable thick plate theory. Here, additional nodal displacement degrees of freedom are derived by retaining higher-order powers of the thickness coordinate in the in-plane displacement fields, which in turn allows for the proper representation of the transverse shear strains of thick plates. Essential rotary inertia terms are derived and included in the present analysis. Nondimensional frequencies are calculated for thick and thin rhombic plates having various combinations of clamped and simply supported edge conditions, and skew angles. The efficacy of using higher-order shear deformable plate finite elements for predicting the in-plane vibration modes of rhombic plates is found to increase as the span-to-thickness ratio decreases and the skew angle increases. The present work shows that higher-order shear deformable finite elements essentially eliminate the transverse shear over-correction of thick rhombic plate frequencies that is produced when finite elements based on the widely used first-order Reissner-Mindlin plate theory are utilized.

Original languageEnglish
Pages (from-to)1133-1148
Number of pages16
JournalInternational Journal of Mechanical Sciences
Volume36
Issue number12
DOIs
StatePublished - Dec 1994

Fingerprint

Dive into the research topics of 'Natural frequencies of shear deformable rhombic plates with clamped and simply supported edges'. Together they form a unique fingerprint.

Cite this