Multi-Scale Simulation of Wind Farm Performance during a Frontal Passage

Robert Arthur, Jeffrey Mirocha, Nikola Marjanovic, Brian Hirth, John Schroeder, Sonia Wharton, Fotini Chow

Research output: Contribution to journalArticlepeer-review


Predicting the response of wind farms to changing flow conditions is necessary for optimal design and operation. In this work, simulation and analysis of a frontal passage through a utility scale wind farm is achieved for the first time using a seamless multi-scale modeling approach. A generalized actuator disk (GAD) wind turbine model is used to represent turbine–flow interaction, and results are compared to novel radar observations during the frontal passage. The Weather Research and Forecasting (WRF) model is employed with a nested grid setup that allows for coupling between multi-scale atmospheric conditions and turbine response. Starting with mesoscale forcing, the atmosphere is dynamically downscaled to the region of interest, where the interaction between turbulent flows and individual wind turbines is simulated with 10 m grid spacing. Several improvements are made to the GAD model to mimic realistic turbine operation, including a yawing capability and a power output calculatio
Original languageEnglish
Pages (from-to)245
StatePublished - Feb 29 2020


Dive into the research topics of 'Multi-Scale Simulation of Wind Farm Performance during a Frontal Passage'. Together they form a unique fingerprint.

Cite this