Multi-objective Privacy-preserving Text Representation Learning

Huixin Zhan, Kun Zhang, Chenyi Hu, Victor Sheng

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Scopus citations

Abstract

Private information can either take the form of key phrases that are explicitly contained in the text or be implicit. For example, demographic information about the author of a text can be predicted with above-chance accuracy from linguistic cues in the text itself. Letting alone its explicitness, some of the private information correlates with the output labels and therefore can be learned by a neural network. In such a case, there is a tradeoff between the utility of the representation (measured by the accuracy of the classification network) and its privacy. This problem is inherently a multi-objective problem because these two objectives may conflict, necessitating a trade-off. Thus, we explicitly cast this problem as multi-objective optimization (MOO) with the overall objective of finding a Pareto stationary solution. We, therefore, propose a multiple-gradient descent algorithm (MGDA) that enables the efficient application of the Frank-Wolfe algorithm [10] using the line search. Experimental results on sentiment analysis and part-of-speech (POS) tagging show that MGDA produces higher-performing models than most recent proxy objective approaches, and performs as well as single objective baselines.

Original languageEnglish
Title of host publicationCIKM 2021 - Proceedings of the 30th ACM International Conference on Information and Knowledge Management
PublisherAssociation for Computing Machinery
Pages3612-3616
Number of pages5
ISBN (Electronic)9781450384469
DOIs
StatePublished - Oct 26 2021
Event30th ACM International Conference on Information and Knowledge Management, CIKM 2021 - Virtual, Online, Australia
Duration: Nov 1 2021Nov 5 2021

Publication series

NameInternational Conference on Information and Knowledge Management, Proceedings

Conference

Conference30th ACM International Conference on Information and Knowledge Management, CIKM 2021
Country/TerritoryAustralia
CityVirtual, Online
Period11/1/2111/5/21

Keywords

  • multi-objective
  • privacy
  • representation learning
  • text

Fingerprint

Dive into the research topics of 'Multi-objective Privacy-preserving Text Representation Learning'. Together they form a unique fingerprint.

Cite this