TY - JOUR
T1 - Molecular Topology and Local Dynamics Govern the Viscosity of Imidazolium-Based Ionic Liquids
AU - Zhang, Yong
AU - Xue, Lianjie
AU - Khabaz, Fardin
AU - Doerfler, Rose
AU - Quitevis, Edward L.
AU - Khare, Rajesh
AU - Maginn, Edward J.
N1 - Publisher Copyright:
© 2015 American Chemical Society.
PY - 2015/10/27
Y1 - 2015/10/27
N2 - A series of branched ionic liquids (ILs) based on the 1-(iso-alkyl)-3-methylimidazolium cation from 1-(1-methylethyl)-3-methylimidazolium bistriflimide to 1-(5-methylhexyl)-3-methylimidazolium bistriflimide and linear ILs based on the 1-(n-alkyl)-3-methylimidazolium cation from 1-propyl-3-methylimidazolium bistriflimide to 1-heptyl-3-methylimidazolum bistriflimide were recently synthesized and their physicochemical properties characterized. For the ILs with the same number of carbons in the alkyl chain, the branched IL was found to have the same density but higher viscosity than the linear one. In addition, the branched IL 1-(2-methylpropyl)-3-methylimidazolium bistriflimide ([2mC3C1Im][NTf2]) was found to have an abnormally high viscosity. Motivated by these experimental observations, the same ILs were studied using molecular dynamics (MD) simulations in the current work. The viscosities of each IL were calculated using the equilibrium MD method at 400 K and the nonequilibrium MD method at 298 K. The results agree with the experimental trend. The ion pair (IP) lifetime, spatial distribution function, and associated potential of mean force, cation size and shape, and interaction energy components were calculated from MD simulations. A quantitative correlation between the liquid structure and the viscosity was observed. Analysis shows that the higher viscosities in the branched ILs are due to the relatively more stable packing between the cations and anions indicated by the lower minima in the potential of mean force (PMF) surface. The abnormal viscosity of [2mC3C1Im][NTf2] was found to be the result of the specific side chain length and molecular structure.
AB - A series of branched ionic liquids (ILs) based on the 1-(iso-alkyl)-3-methylimidazolium cation from 1-(1-methylethyl)-3-methylimidazolium bistriflimide to 1-(5-methylhexyl)-3-methylimidazolium bistriflimide and linear ILs based on the 1-(n-alkyl)-3-methylimidazolium cation from 1-propyl-3-methylimidazolium bistriflimide to 1-heptyl-3-methylimidazolum bistriflimide were recently synthesized and their physicochemical properties characterized. For the ILs with the same number of carbons in the alkyl chain, the branched IL was found to have the same density but higher viscosity than the linear one. In addition, the branched IL 1-(2-methylpropyl)-3-methylimidazolium bistriflimide ([2mC3C1Im][NTf2]) was found to have an abnormally high viscosity. Motivated by these experimental observations, the same ILs were studied using molecular dynamics (MD) simulations in the current work. The viscosities of each IL were calculated using the equilibrium MD method at 400 K and the nonequilibrium MD method at 298 K. The results agree with the experimental trend. The ion pair (IP) lifetime, spatial distribution function, and associated potential of mean force, cation size and shape, and interaction energy components were calculated from MD simulations. A quantitative correlation between the liquid structure and the viscosity was observed. Analysis shows that the higher viscosities in the branched ILs are due to the relatively more stable packing between the cations and anions indicated by the lower minima in the potential of mean force (PMF) surface. The abnormal viscosity of [2mC3C1Im][NTf2] was found to be the result of the specific side chain length and molecular structure.
UR - http://www.scopus.com/inward/record.url?scp=84948439506&partnerID=8YFLogxK
U2 - 10.1021/acs.jpcb.5b08245
DO - 10.1021/acs.jpcb.5b08245
M3 - Article
AN - SCOPUS:84948439506
VL - 119
SP - 14934
EP - 14944
JO - Journal of Physical Chemistry B
JF - Journal of Physical Chemistry B
SN - 1520-6106
IS - 47
ER -