TY - JOUR
T1 - Molecular phylogenetic and in silico analysis of glyceraldeyde-3-phosphate dehydrogenase (GAPDH) gene from northern bobwhite quail (Colinus virginianus)
AU - Kalyanasundaram, Aravindan
AU - Henry, Brett J.
AU - Henry, Cassandra
AU - Kendall, Ronald J.
N1 - Funding Information:
This research received funding and support form Park Cities Quail Coalition (Grant No. 24A125) and the Rolling Plains Quail Research Foundation (Grant No. 23A751).
Publisher Copyright:
© 2021, The Author(s), under exclusive licence to Springer Nature B.V. part of Springer Nature.
PY - 2021/2
Y1 - 2021/2
N2 - Many recent studies have been focused on prevalence and impact of two helminth parasites, eyeworm Oxyspirura petrowi and caecal worm Aulonocephalus pennula, in the northern bobwhite quail (Colinus virginianus). However, few studies have attempted to examine the effect of these parasites on the bobwhite immune system. This is likely due to the lack of proper reference genes for relative gene expression studies. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is a glycolytic enzyme that is often utilized as a reference gene, and in this preliminary study, we evaluated the similarity of bobwhite GAPDH to GAPDH in other avian species to evaluate its potential as a reference gene in bobwhite. GAPDH was identified in the bobwhite full genome sequence and multiple sets of PCR primers were designed to generate overlapping PCR products. These products were then sequenced and then aligned to generate the sequence for the full-length open reading frame (ORF) of bobwhite GAPDH. Utilizing this sequence, phylogenetic analyses and comparative analysis of the exon–intron pattern were conducted that revealed high similarity of GAPDH encoding sequences among bobwhite and other Galliformes. Additionally, This ORF sequence was also used to predict the encoded protein and its three-dimensional structure which like the phylogenetic analyses reveal that bobwhite GAPDH is similar to GAPDH in other Galliformes. Finally, GAPDH qPCR primers were designed, standardized, and tested with bobwhite both uninfected and infected with O. petrowi, and this preliminary test showed no statistical difference in expression of GAPDH between the two groups. These analyses are the first to investigate GAPDH in bobwhite. These efforts in phylogeny, sequence analysis, and protein structure suggest that there is > 97% conservation of GADPH among Galliformes. Furthermore, the results of these in silico tests and the preliminary qPCR indicate that GAPDH is a prospective candidate for use in gene expression analyses in bobwhite.
AB - Many recent studies have been focused on prevalence and impact of two helminth parasites, eyeworm Oxyspirura petrowi and caecal worm Aulonocephalus pennula, in the northern bobwhite quail (Colinus virginianus). However, few studies have attempted to examine the effect of these parasites on the bobwhite immune system. This is likely due to the lack of proper reference genes for relative gene expression studies. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is a glycolytic enzyme that is often utilized as a reference gene, and in this preliminary study, we evaluated the similarity of bobwhite GAPDH to GAPDH in other avian species to evaluate its potential as a reference gene in bobwhite. GAPDH was identified in the bobwhite full genome sequence and multiple sets of PCR primers were designed to generate overlapping PCR products. These products were then sequenced and then aligned to generate the sequence for the full-length open reading frame (ORF) of bobwhite GAPDH. Utilizing this sequence, phylogenetic analyses and comparative analysis of the exon–intron pattern were conducted that revealed high similarity of GAPDH encoding sequences among bobwhite and other Galliformes. Additionally, This ORF sequence was also used to predict the encoded protein and its three-dimensional structure which like the phylogenetic analyses reveal that bobwhite GAPDH is similar to GAPDH in other Galliformes. Finally, GAPDH qPCR primers were designed, standardized, and tested with bobwhite both uninfected and infected with O. petrowi, and this preliminary test showed no statistical difference in expression of GAPDH between the two groups. These analyses are the first to investigate GAPDH in bobwhite. These efforts in phylogeny, sequence analysis, and protein structure suggest that there is > 97% conservation of GADPH among Galliformes. Furthermore, the results of these in silico tests and the preliminary qPCR indicate that GAPDH is a prospective candidate for use in gene expression analyses in bobwhite.
KW - Bobwhite
KW - Exon
KW - GAPDH
KW - Gene expression
KW - Intron
KW - Reference gene
KW - qPCR
UR - http://www.scopus.com/inward/record.url?scp=85100963349&partnerID=8YFLogxK
U2 - 10.1007/s11033-021-06186-3
DO - 10.1007/s11033-021-06186-3
M3 - Article
C2 - 33580461
AN - SCOPUS:85100963349
SN - 0301-4851
VL - 48
SP - 1093
EP - 1101
JO - Molecular Biology Reports
JF - Molecular Biology Reports
IS - 2
ER -