Modeling of compact explosively-driven ferroelectric generators

D. Bolyard, A. Neuber, J. Krile, M. Kristiansen

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Hydrodynamic pressure simulations combined with an empirical algorithm are used to model the open-circuit voltage output of several explosively compressed ferroelectric materials. The empirical algorithm was initially developed using detonating cord containing PETN and a metal driver element to compress the ferroelectric materials while the open-circuit voltage is recorded. A hydrodynamic code suite, CTH from Sandia National Labs, enables calculating shockwave propagation and localized pressures. The resulting pressure profile in the ferroelectric material is then used as input for an empirically derived algorithm to calculate the predicted open-circuit voltage of the ferroelectric material. This previously developed empirical algorithm exhibited reasonable correlation between experimental and calculated open-circuit output voltages, but began to deviate when more powerful explosives were used. Hence, the amount of explosive material and geometry of the metal drive was varied to produce a wide range of peak pressures, including pressures higher then the maximum of 3.1 GPa previously modeled by the empirical algorithm. This data serves as the base to further develop the empirical algorithm for various ferroelectric materials and to more accurately model the open-circuit output voltage (experimentally observed range, normalized for thickness, of 1.3 to 3.8 kV/mm) over the wide range of applied pressures.

Original languageEnglish
Title of host publicationProceedings of the 2010 IEEE International Power Modulator and High Voltage Conference, IPMHVC 2010
Pages125-128
Number of pages4
DOIs
StatePublished - 2010
Event2010 IEEE International Power Modulator and High Voltage Conference, IPMHVC 2010 - Atlanta, GA, United States
Duration: May 23 2010May 27 2010

Publication series

NameProceedings of the 2010 IEEE International Power Modulator and High Voltage Conference, IPMHVC 2010

Conference

Conference2010 IEEE International Power Modulator and High Voltage Conference, IPMHVC 2010
CountryUnited States
CityAtlanta, GA
Period05/23/1005/27/10

Fingerprint Dive into the research topics of 'Modeling of compact explosively-driven ferroelectric generators'. Together they form a unique fingerprint.

Cite this