Modeling chemical and thermal states of reactive metal oxides in a CR5 solar thermochemical heat engine

R. E. Hogan, J. E. Miller, D. L. James, K. S. Chen, R. B. Diver

Research output: Contribution to conferencePaper

3 Scopus citations

Abstract

"Sunshine to Petrol" is a grand-challenge research project at Sandia National Laboratories with the objective of creating a technology for producing feedstocks for making liquid fuels by splitting carbon dioxide (and water) using concentrated solar energy [1]. A reactor-level performance model is described for computing the solar-driven thermochemical splitting of carbon dioxide via a two-step metal-oxide cycle. The model simulates the thermochemical performance of the Counter-Rotating-Ring Receiver/Reactor/Recuperator (CR5). The numerical model for computing the reactor thermochemical performance is formulated as a system of coupled first-order ordinary differential equations describing the energy and mass transfer within each reactive ring and radiative energy transfer between adjacent rings. In this formulation, each of the counter-rotating rings is treated in a one-dimensional sense in the circumferential direction; supporting circumferential temperature and species gradients with assumed negligible gradients in both the radial and axial directions. The model includes radiative heat transfer between adjacent counter-rotating rings, variations in the incident solar flux distribution, heat losses to the reactor housing, and energy of reaction associated with the reduction and oxidation reactions. An overview of the physics included in this first-generation numerical model will be presented. Preliminary results include the circumferential distributions of temperature and species within each of the reactive rings. The computed overall chemical conversion efficiency will be presented for a range of design and operating parameters; including ring speed, carrier ring mass, reactive material loading, radiative emissivity, and differing incident flux distributions.

Original languageEnglish
Pages1137-1144
Number of pages8
DOIs
StatePublished - 2012
EventASME 2012 6th International Conference on Energy Sustainability, ES 2012, Collocated with the ASME 2012 10th International Conference on Fuel Cell Science, Engineering and Technology - San Diego, CA, United States
Duration: Jul 23 2012Jul 26 2012

Conference

ConferenceASME 2012 6th International Conference on Energy Sustainability, ES 2012, Collocated with the ASME 2012 10th International Conference on Fuel Cell Science, Engineering and Technology
CountryUnited States
CitySan Diego, CA
Period07/23/1207/26/12

Fingerprint Dive into the research topics of 'Modeling chemical and thermal states of reactive metal oxides in a CR5 solar thermochemical heat engine'. Together they form a unique fingerprint.

  • Cite this

    Hogan, R. E., Miller, J. E., James, D. L., Chen, K. S., & Diver, R. B. (2012). Modeling chemical and thermal states of reactive metal oxides in a CR5 solar thermochemical heat engine. 1137-1144. Paper presented at ASME 2012 6th International Conference on Energy Sustainability, ES 2012, Collocated with the ASME 2012 10th International Conference on Fuel Cell Science, Engineering and Technology, San Diego, CA, United States. https://doi.org/10.1115/ES2012-91490