TY - JOUR
T1 - Metformin effectively restores the HPA axis function in diet-induced obese rats
AU - Shin, Andrew
AU - Balasubramanian, Priya
AU - Suryadevara, Pavan
AU - Zyskowski, Justin
AU - Herdt, Thomas H.
AU - MohanKumar, Sheba M.J.
AU - MohanKumar, Puliyur S.
N1 - Funding Information:
Funding This study was supported in part by NIH grant R01 AG027697 to PSM and NSF grant IBN0236385 to SMJM and PSM. ACS was supported by Biomedical Health Research Initiative grant, MSU.
Publisher Copyright:
© 2020, The Author(s), under exclusive licence to Springer Nature Limited.
PY - 2021/2
Y1 - 2021/2
N2 - Introduction: The hypothalamo-pituitary-adrenal (HPA) axis is perturbed in obesity. We previously reported presence of leptin resistance in the brainstem and uncoupling between central noradrenergic tone and the HPA axis in obesity-prone (DIO) rats. Metformin is shown to lower body weight and adiposity, but the underlying mechanism is unclear. We hypothesized that this is associated with restored HPA axis function. Methods: Adult male DIO rats were placed on either a regular chow or HF diet for 7 weeks. Starting week 4, the animals were given either a low dose (60 mg/kg) or high dose (300 mg/kg) of metformin in drinking water. In addition to body weight and feeding, we examined different arms of the HPA axis to test if metformin can reinstate its function and coupling. To understand potential mechanisms, leptin signaling in the brainstem and circulating free fatty acid levels were also assessed. Results: Metformin treatment lowered weight gain, fat mass, caloric intake, and serum leptin levels. HPA axis activity as determined by corticotropin-releasing hormone in the median eminence and serum corticosterone was decreased by metformin in a dose-dependent manner, and so was norepinephrine (NE) in the paraventricular nucleus. Importantly, metformin completely normalized the NE-HPA axis uncoupling. While brainstem pSTAT-3 and SOCS-3, key markers of leptin signaling, were not different between groups, circulating saturated and unsaturated free fatty acids were reduced in HF-fed, metformin-treated animals. Conclusions: These findings suggest that oral metformin can successfully correct HPA axis dysfunction that is associated with lowered circulating free fatty acids in DIO rats, thereby uncovering a novel effect of metformin in the treatment of obesity.
AB - Introduction: The hypothalamo-pituitary-adrenal (HPA) axis is perturbed in obesity. We previously reported presence of leptin resistance in the brainstem and uncoupling between central noradrenergic tone and the HPA axis in obesity-prone (DIO) rats. Metformin is shown to lower body weight and adiposity, but the underlying mechanism is unclear. We hypothesized that this is associated with restored HPA axis function. Methods: Adult male DIO rats were placed on either a regular chow or HF diet for 7 weeks. Starting week 4, the animals were given either a low dose (60 mg/kg) or high dose (300 mg/kg) of metformin in drinking water. In addition to body weight and feeding, we examined different arms of the HPA axis to test if metformin can reinstate its function and coupling. To understand potential mechanisms, leptin signaling in the brainstem and circulating free fatty acid levels were also assessed. Results: Metformin treatment lowered weight gain, fat mass, caloric intake, and serum leptin levels. HPA axis activity as determined by corticotropin-releasing hormone in the median eminence and serum corticosterone was decreased by metformin in a dose-dependent manner, and so was norepinephrine (NE) in the paraventricular nucleus. Importantly, metformin completely normalized the NE-HPA axis uncoupling. While brainstem pSTAT-3 and SOCS-3, key markers of leptin signaling, were not different between groups, circulating saturated and unsaturated free fatty acids were reduced in HF-fed, metformin-treated animals. Conclusions: These findings suggest that oral metformin can successfully correct HPA axis dysfunction that is associated with lowered circulating free fatty acids in DIO rats, thereby uncovering a novel effect of metformin in the treatment of obesity.
UR - http://www.scopus.com/inward/record.url?scp=85091181181&partnerID=8YFLogxK
U2 - 10.1038/s41366-020-00688-z
DO - 10.1038/s41366-020-00688-z
M3 - Article
C2 - 32951009
VL - 45
SP - 383
EP - 395
JO - International Journal of Obesity
JF - International Journal of Obesity
IS - 2
ER -