Meteorological controls on the diurnal variability of carbon monoxide mixing ratio at a mountaintop monitoring site in the Appalachian Mountains

Temple R. Lee, Stephan F.J. de Wekker, Sandip Pal, Arlyn E. Andrews, Jonathan Kofler

Research output: Contribution to journalArticlepeer-review

25 Scopus citations


The variability of trace gases such as carbon monoxide (CO) at surface monitoring stations is affected by meteorological forcings that are particularly complicated over mountainous terrain. A detailed understanding of the impact of meteorological forcings on trace gas variability is challenging, but is vital to distinguish trace gas measurements affected by local pollutant sources from measurements representative of background mixing ratios. In the present study, we investigate the meteorological and CO characteristics at Pinnacles (38.61 N, 78.35 W, 1017m above mean sea level), a mountaintop monitoring site in northwestern Virginia, USA, in the Appalachian Mountains, from 2009 to 2012, and focus on understanding the dominant meteorological forcings affecting the CO variability on diurnal timescales. The annual mean diurnal CO cycle shows a minimum in the morning between 0700 and 0900 LST and a maximum in the late afternoon between 1600 and 2000 LST, with a mean (median) daily CO amplitude of 39.2±23.7 ppb (33.2 ppb). CO amplitudes show large day-to-day variability. The largest CO amplitudes, in which CO mixing ratios can change >100 ppb in <3 h, occur in the presence of synoptic disturbances. Under fair weather conditions, local- to regional-scale transport processes are found to be more important drivers of the diurnal CO variability. On fair weather days with northwesterly winds, boundary layer dilution causes a daytime CO decrease, resembling the variability observed atop tall towers in flat terrain. Fair weather days with a wind shift from the northwest to the south are characterised by an afternoon CO increase and resemble the variability observed at mountaintops influenced by the vertical transport of polluted air from adjacent valleys.

Original languageEnglish
Article number25659
JournalTellus, Series B: Chemical and Physical Meteorology
Issue number1
StatePublished - 2015


  • Air quality
  • Carbon monoxide
  • Horizontal wind shift
  • Mountaintop monitoring
  • Planetary boundary layer
  • Vertical mixing


Dive into the research topics of 'Meteorological controls on the diurnal variability of carbon monoxide mixing ratio at a mountaintop monitoring site in the Appalachian Mountains'. Together they form a unique fingerprint.

Cite this