### Abstract

In this article, the Meshless Local Petrov-Galerkin (MLPG) Mixed Collocation Method is developed to solve the Cauchy inverse problems of Steady- State Heat Transfer In the MLPG mixed collocation method, the mixed scheme is applied to independently interpolate temperature as well as heat flux using the same meshless basis functions The balance and compatibility equations are satisfied at each node in a strong sense using the collocation method. The boundary conditions are also enforced using the collocation method, allowing temperature and heat flux to be over-specified at the same portion of the boundary. For the inverse problems where noise is present in the measurement, Tikhonov regularization method is used, to mitigate the inherent ill-posed nature of inverse problem, with its regularization parameter determined by the L-Curve method. Several numerical examples are given, wherein both temperature as well as heat flux are prescribed at part of the boundary, and the data at the other part of the boundary and in the domain have to be solved for. Through these numerical examples, we investigate the accuracy, convergence, and stability of the proposed MLPG mixed collocation method for solving inverse problems of Heat Transfer.

Original language | English |
---|---|

Pages (from-to) | 509-533 |

Number of pages | 25 |

Journal | CMES - Computer Modeling in Engineering and Sciences |

Volume | 97 |

Issue number | 6 |

State | Published - 2014 |

### Keywords

- Collocation
- Heat transfer
- Inverse problem
- MLPG

## Fingerprint Dive into the research topics of 'Meshless local petrov-galerkin mixed collocation method for solving cauchy inverse problems of steady-state heat transfer'. Together they form a unique fingerprint.

## Cite this

*CMES - Computer Modeling in Engineering and Sciences*,

*97*(6), 509-533.