Maximum gravitational-wave energy emissible in magnetar flares

Research output: Contribution to journalArticlepeer-review

54 Scopus citations


Recent searches of gravitational-wave data raise the question of what maximum gravitational-wave energies could be emitted during gamma-ray flares of highly magnetized neutron stars (magnetars). The highest energies (∼1049erg) predicted so far come from a model in which the internal magnetic field of a magnetar experiences a global reconfiguration, changing the hydromagnetic equilibrium structure of the star and tapping the gravitational potential energy without changing the magnetic potential energy. The largest energies in this model assume very special conditions, including a large change in moment of inertia (which was observed in at most one flare), a very high internal magnetic field, and a very soft equation of state. Here we show that energies of 1048-1049erg are possible under more generic conditions by tapping the magnetic energy, and we note that similar energies may also be available through cracking of exotic solid cores. Current observational limits on gravitational waves from magnetar fundamental modes are just reaching these energies and will beat them in the era of advanced interferometers.

Original languageEnglish
Article number104014
JournalPhysical Review D - Particles, Fields, Gravitation and Cosmology
Issue number10
StatePublished - May 5 2011


Dive into the research topics of 'Maximum gravitational-wave energy emissible in magnetar flares'. Together they form a unique fingerprint.

Cite this