Massively parallel implementations of coupled-cluster methods for electron spin resonance spectra. I. Isotropic hyperfine coupling tensors in large radicals

Prakash Verma, Ajith Perera, Jorge A. Morales

Research output: Contribution to journalArticlepeer-review

15 Scopus citations

Abstract

Coupled cluster (CC) methods provide highly accurate predictions of molecular properties, but their high computational cost has precluded their routine application to large systems. Fortunately, recent computational developments in the ACES III program by the Bartlett group the OED/ERD atomic integral package, the super instruction processor, and the super instruction architecture language permit overcoming that limitation by providing a framework for massively parallel CC implementations. In that scheme, we are further extending those parallel CC efforts to systematically predict the three main electron spin resonance (ESR) tensors (A-, g-, and D-tensors) to be reported in a series of papers. In this paper inaugurating that series, we report our new ACES III parallel capabilities that calculate isotropic hyperfine coupling constants in 38 neutral, cationic, and anionic radicals that include the 11B, 17O, 9Be, 19F, 1H, 13C, 35Cl, 33S,14N, 31P, and 67Zn nuclei. Present parallel calculations are conducted at the Hartree-Fock (HF), second-order many-body perturbation theory MBPT(2), CC singles and doubles (CCSD), and CCSD with perturbative triples CCSD(T) levels using Roos augmented double- and triple-zeta atomic natural orbitals basis sets. HF results consistently overestimate isotropic hyperfine coupling constants. However, inclusion of electron correlation effects in the simplest way via MBPT(2) provides significant improvements in the predictions, but not without occasional failures. In contrast, CCSD results are consistently in very good agreement with experimental results. Inclusion of perturbative triples to CCSD via CCSD(T) leads to small improvements in the predictions, which might not compensate for the extra computational effort at a non-iterative N 7-scaling in CCSD(T). The importance of these accurate computations of isotropic hyperfine coupling constants to elucidate experimental ESR spectra, to interpret spin-density distributions, and to characterize and identify radical species is illustrated with our results from large organic radicals. Those include species relevant for organic chemistry, petroleum industry, and biochemistry, such as the cyclo-hexyl, 1-adamatyl, and Zn-porphycene anion radicals, inter alia.

Original languageEnglish
Article number174103
JournalJournal of Chemical Physics
Volume139
Issue number17
DOIs
StatePublished - Nov 7 2013

Fingerprint

Dive into the research topics of 'Massively parallel implementations of coupled-cluster methods for electron spin resonance spectra. I. Isotropic hyperfine coupling tensors in large radicals'. Together they form a unique fingerprint.

Cite this