TY - JOUR
T1 - Magnetic and optical properties of NaGdF4:Nd3+, Yb3+, Tm3+ nanocrystals with upconversion/downconversion luminescence from visible to the near-infrared second window
AU - Zhang, Xianwen
AU - Zhao, Zhi
AU - Zhang, Xin
AU - Cordes, David B.
AU - Weeks, Brandon
AU - Qiu, Bensheng
AU - Madanan, Kailasnath
AU - Sardar, Dhiraj
AU - Chaudhuri, Jharna
N1 - Publisher Copyright:
© 2014, Tsinghua University Press and Springer-Verlag Berlin Heidelberg.
PY - 2015/2
Y1 - 2015/2
N2 - We have designed and synthesized NaGdF4:Nd3+, Yb3+, Tm3+ magnetic nanophosphors with combined dual-mode downconversion (DC) and upconversion (UC) photoluminescence upon 800 nm excitation. Hexagonal-phase NaGdF4:Nd3+, Yb3+, Tm3+ nanocrystals (NCs) with an average size of 21 nm were synthesized using a solvothermal approach. Nd3+, Yb3+, Tm3+ triple-doped NaGdF4 NCs exhibit a broad range of photoluminescence peaks covering a near infrared first/second window (860–900, 1,000, and 1,060 nm), and visible emission including blue (475 nm), green (520 and 542 nm) and yellow (587 nm) after excitation at 800 nm. A mechanism involving circulation of energy over Gd3+ sublattices as bridge ions and final trapping by the initial activator ions (Nd3+) has been proposed. Penetration depth studies indicate that NIR emission is easily detected even at a large tissue thickness of 10 mm. These paramagnetic nanophosphors demonstrate a large magnetization value of 1.88 emu/g at 20 kOe and longitudinal relaxivity value of 1.2537 mM−1·S−1 as a T1-weighted magnetic resonance imaging contrast agent. These NaGdF4:Nd3+, Yb3+, Tm3+ NCs are promising for applications in biological and magnetic resonance imaging.
AB - We have designed and synthesized NaGdF4:Nd3+, Yb3+, Tm3+ magnetic nanophosphors with combined dual-mode downconversion (DC) and upconversion (UC) photoluminescence upon 800 nm excitation. Hexagonal-phase NaGdF4:Nd3+, Yb3+, Tm3+ nanocrystals (NCs) with an average size of 21 nm were synthesized using a solvothermal approach. Nd3+, Yb3+, Tm3+ triple-doped NaGdF4 NCs exhibit a broad range of photoluminescence peaks covering a near infrared first/second window (860–900, 1,000, and 1,060 nm), and visible emission including blue (475 nm), green (520 and 542 nm) and yellow (587 nm) after excitation at 800 nm. A mechanism involving circulation of energy over Gd3+ sublattices as bridge ions and final trapping by the initial activator ions (Nd3+) has been proposed. Penetration depth studies indicate that NIR emission is easily detected even at a large tissue thickness of 10 mm. These paramagnetic nanophosphors demonstrate a large magnetization value of 1.88 emu/g at 20 kOe and longitudinal relaxivity value of 1.2537 mM−1·S−1 as a T1-weighted magnetic resonance imaging contrast agent. These NaGdF4:Nd3+, Yb3+, Tm3+ NCs are promising for applications in biological and magnetic resonance imaging.
KW - energy transfer
KW - nanocrystals
KW - near-infrared second
KW - photoluminescence
KW - window
UR - http://www.scopus.com/inward/record.url?scp=84923328853&partnerID=8YFLogxK
U2 - 10.1007/s12274-014-0548-2
DO - 10.1007/s12274-014-0548-2
M3 - Article
AN - SCOPUS:84923328853
SN - 1998-0124
VL - 8
SP - 636
EP - 648
JO - Nano Research
JF - Nano Research
IS - 2
ER -