Abstract
A series of Mach-number- (M) invariant scalings is derived for compressible turbulent boundary layers (CTBLs), leading to a viscosity weighted transformation for the mean-velocity profile that is superior to vanDriest transformation. The theory is validated by direct numerical simulation of spatially developing CTBLs with M up to 6. A boundary layer edge is introduced to compare different M flows and is shown to better present the M-invariant multilayer structure of CTBLs. The new scalings derived from the kinetic energy balance substantiate Morkovin's hypothesis and promise accurate prediction of the mean profiles of CTBLs.
Original language | English |
---|---|
Article number | 054502 |
Journal | Physical Review Letters |
Volume | 109 |
Issue number | 5 |
DOIs | |
State | Published - Jul 31 2012 |