TY - JOUR
T1 - Local serotonin mediates cyclic strain-induced phenotype transformation, matrix degradation, and glycosaminoglycan synthesis in cultured sheep mitral valves
AU - Lacerda, Carla M.R.
AU - Kisiday, John
AU - Johnson, Brennan
AU - Christopher Orton, E.
PY - 2012/5/15
Y1 - 2012/5/15
N2 - This study addressed the following questions: 1) Does cyclic tensile strain induce protein expression patterns consistent with myxomatous degeneration in mitral valves? 2) Does cyclic strain induce local serotonin synthesis in mitral valves? 3) Are cyclic strain-induced myxomatous protein expression patterns in mitral valves dependent on local serotonin? Cultured sheep mitral valve leaflets were subjected to 0, 10, 20, and 30% cyclic strain for 24 and 72 h. Protein levels of activated myofibroblast phenotype markers, α-smooth muscle actin (α-SMA) and nonmuscle embryonic myosin (SMemb); matrix catabolic enzymes, matrix metalloprotease (MMP) 1 and 13, and cathepsin K; and sulfated glycosaminoglycan (GAG) content in mitral valves increased with increased cyclic strain. Serotonin was present in the serum-free media of cultured mitral valves and concentrations increased with cyclic strain. Expression of the serotonin synthetic enzyme tryptophan hydroxylase 1 (TPH1) increased in strained mitral valves. Pharmacologic inhibition of the serotonin 2B/2C receptor or TPH1 diminished expression of phenotype markers (α-SMA and SMemb) and matrix catabolic enzyme (MMP1, MMP13, and cathepsin K) expression in 10- and 30%-strained mitral valves. These results provide first evidence that mitral valves synthesize serotonin locally. The results further demonstrate that tensile loading modulates local serotonin synthesis, expression of effector proteins associated with mitral valve degeneration, and GAG synthesis. Inhibition of serotonin diminishes strain-mediated protein expression patterns. These findings implicate serotonin and tensile loading in mitral degeneration, functionally link the pathogeneses of serotoninergic (carcinoid, drug-induced) and degenerative mitral valve disease, and have therapeutic implications.
AB - This study addressed the following questions: 1) Does cyclic tensile strain induce protein expression patterns consistent with myxomatous degeneration in mitral valves? 2) Does cyclic strain induce local serotonin synthesis in mitral valves? 3) Are cyclic strain-induced myxomatous protein expression patterns in mitral valves dependent on local serotonin? Cultured sheep mitral valve leaflets were subjected to 0, 10, 20, and 30% cyclic strain for 24 and 72 h. Protein levels of activated myofibroblast phenotype markers, α-smooth muscle actin (α-SMA) and nonmuscle embryonic myosin (SMemb); matrix catabolic enzymes, matrix metalloprotease (MMP) 1 and 13, and cathepsin K; and sulfated glycosaminoglycan (GAG) content in mitral valves increased with increased cyclic strain. Serotonin was present in the serum-free media of cultured mitral valves and concentrations increased with cyclic strain. Expression of the serotonin synthetic enzyme tryptophan hydroxylase 1 (TPH1) increased in strained mitral valves. Pharmacologic inhibition of the serotonin 2B/2C receptor or TPH1 diminished expression of phenotype markers (α-SMA and SMemb) and matrix catabolic enzyme (MMP1, MMP13, and cathepsin K) expression in 10- and 30%-strained mitral valves. These results provide first evidence that mitral valves synthesize serotonin locally. The results further demonstrate that tensile loading modulates local serotonin synthesis, expression of effector proteins associated with mitral valve degeneration, and GAG synthesis. Inhibition of serotonin diminishes strain-mediated protein expression patterns. These findings implicate serotonin and tensile loading in mitral degeneration, functionally link the pathogeneses of serotoninergic (carcinoid, drug-induced) and degenerative mitral valve disease, and have therapeutic implications.
KW - Myxomatous mitral valve disease
KW - Valvular heart disease
UR - http://www.scopus.com/inward/record.url?scp=84861147763&partnerID=8YFLogxK
U2 - 10.1152/ajpheart.00987.2011
DO - 10.1152/ajpheart.00987.2011
M3 - Article
C2 - 22345569
AN - SCOPUS:84861147763
SN - 0363-6135
VL - 302
SP - H1983-H1990
JO - American Journal of Physiology - Heart and Circulatory Physiology
JF - American Journal of Physiology - Heart and Circulatory Physiology
IS - 10
ER -