TY - JOUR
T1 - Learners' Technological Acceptance of VR Content Development
T2 - A Sequential 3-Part Use Case Study of Diverse Post-Secondary Students
AU - Nguyen, Vinh T.
AU - Hite, Rebecca
AU - Dang, Tommy
AU - Nguyen, N
N1 - Publisher Copyright:
© 2019 World Scientific Publishing Company.
PY - 2019/9/1
Y1 - 2019/9/1
N2 - Web-based virtual reality (VR) development tools are in ubiquitous use by software developers, and now, university (undergraduate) students, to move beyond using, to creating new and energizing VR content. Web-based VR (WebVR), among other libraries and frameworks, have risen as a low-cost platform for users to create rich and intuitive VR content and applications. However, the success of WebVR as an instructional tool relies on post-secondary students technological acceptance (TA), the intersectionality of a user's perceived utility (PU) and perceived ease of use (PEOU, or convenience) with said technological tool. Yet, there is a dearth of exploratory studies of students' experiences with the AR/VR development technologies to infer their TA. To ascertain the viability of WebVR tools for software engineering undergraduates in the classroom, this paper presents a 3-case contextual investigation of 38 undergraduate students tasked with creating VR content. In each use case, students were provided increasing freedom in their VR content development parameters. Results indicated that students demonstrated elements of technological acceptance in their selection of webVR and other platforms, and not only successfully creating rich and robust VR content (PU), but also executing these projects in a short period (PEOU). Other positive externalities observed were students exhibitions of soft skills (e.g. creativity, critical thinking) and different modes of demonstrating coding knowledge, which suggest further study. Discussed are the lessons learned from the WebVR and VR/AR interventions and recommendations for WebVR instruction. This work may be helpful for both learners and teachers using VR/AR in selecting, designing, and developing coursework materials, tools, and libraries.
AB - Web-based virtual reality (VR) development tools are in ubiquitous use by software developers, and now, university (undergraduate) students, to move beyond using, to creating new and energizing VR content. Web-based VR (WebVR), among other libraries and frameworks, have risen as a low-cost platform for users to create rich and intuitive VR content and applications. However, the success of WebVR as an instructional tool relies on post-secondary students technological acceptance (TA), the intersectionality of a user's perceived utility (PU) and perceived ease of use (PEOU, or convenience) with said technological tool. Yet, there is a dearth of exploratory studies of students' experiences with the AR/VR development technologies to infer their TA. To ascertain the viability of WebVR tools for software engineering undergraduates in the classroom, this paper presents a 3-case contextual investigation of 38 undergraduate students tasked with creating VR content. In each use case, students were provided increasing freedom in their VR content development parameters. Results indicated that students demonstrated elements of technological acceptance in their selection of webVR and other platforms, and not only successfully creating rich and robust VR content (PU), but also executing these projects in a short period (PEOU). Other positive externalities observed were students exhibitions of soft skills (e.g. creativity, critical thinking) and different modes of demonstrating coding knowledge, which suggest further study. Discussed are the lessons learned from the WebVR and VR/AR interventions and recommendations for WebVR instruction. This work may be helpful for both learners and teachers using VR/AR in selecting, designing, and developing coursework materials, tools, and libraries.
KW - A-frame
KW - computer science course design
KW - soft skills
KW - technology acceptance model
KW - undergraduate education
KW - web-based virtual reality
UR - http://www.scopus.com/inward/record.url?scp=85072963908&partnerID=8YFLogxK
U2 - 10.1142/S1793351X19400154
DO - 10.1142/S1793351X19400154
M3 - Article
AN - SCOPUS:85072963908
SN - 1793-351X
VL - 13
SP - 343
EP - 366
JO - International Journal of Semantic Computing
JF - International Journal of Semantic Computing
IS - 3
ER -