Laser with an in-loop relative frequency stability of 1.0× 10-21 on a 100-ms time scale for gravitational-wave detection

F. Acernese, M. Alshourbagy, F. Antonucci, S. Aoudia, K. G. Arun, P. Astone, G. Ballardin, F. Barone, L. Barsotti, M. Barsuglia, Th S. Bauer, S. Bigotta, S. Birindelli, M. A. Bizouard, C. Boccara, F. Bondu, L. Bonelli, L. Bosi, S. Braccini, C. BradaschiaA. Brillet, V. Brisson, H. J. Bulten, D. Buskulic, G. Cagnoli, E. Calloni, E. Campagna, B. Canuel, F. Carbognani, L. Carbone, F. Cavalier, R. Cavalieri, G. Cella, E. Cesarini, E. Chassande-Mottin, S. Chatterji, F. Cleva, E. Coccia, J. Colas, M. Colombini, C. Corda, A. Corsi, F. Cottone, J. P. Coulon, E. Cuoco, S. D'Antonio, A. Dari, V. Dattilo, M. Davier, R. De Rosa, M. Del Prete, L. Di Fiore, A. Di Lieto, M. Di Paolo Emilio, A. Di Virgilio, V. Fafone, I. Ferrante, F. Fidecaro, I. Fiori, R. Flaminio, J. D. Fournier, S. Frasca, F. Frasconi, L. Gammaitoni, F. Garufi, G. Gemme, E. Genin, A. Gennai, A. Giazotto, M. Granata, V. Granata, C. Greverie, G. Guidi, H. Heitmann, P. Hello, S. Hild, D. Huet, P. La Penna, M. Laval, N. Leroy, N. Letendre, M. Lorenzini, V. Loriette, G. Losurdo, J. M. MacKowski, E. Majorana, N. Man, M. Mantovani, F. Marchesoni, F. Marion, J. Marque, F. Martelli, A. Masserot, F. Menzinger, C. Michel, L. Milano, Y. Minenkov, S. Mitra, M. Mohan, J. Moreau, N. Morgado, A. Morgia, S. Mosca, B. Mours, I. Neri, F. Nocera, G. Pagliaroli, C. Palomba, F. Paoletti, S. Pardi, A. Pasqualetti, R. Passaquieti, D. Passuello, G. Persichetti, F. Piergiovanni, L. Pinard, R. Poggiani, M. Punturo, P. Puppo, O. Rabaste, P. Rapagnani, T. Regimbau, F. Ricci, A. Rocchi, L. Rolland, R. Romano, P. Ruggi, B. Sassolas, D. Sentenac, B. L. Swinkels, R. Terenzi, A. Toncelli, M. Tonelli, E. Tournefier, F. Travasso, J. Trummer, G. Vajente, J. F.J. Van Den Brand, S. Van Der Putten, D. Verkindt, F. Vetrano, A. Viceré, J. Y. Vinet, H. Vocca, M. Was, M. Yvert

Research output: Contribution to journalArticle

7 Scopus citations

Abstract

We report on the stabilization of the laser frequency for the Virgo gravitational-wave detector. We have obtained a frequency noise level, measured in loop, of 1.9× 10-7 Hz/ Hz at 10 Hz for the 1064 nm laser; this value is limited by shot noise. The Allan standard deviation for relative frequency noise is 1.0× 10-21 on a 100-ms time scale. The spectral density of the laser frequency noise is negligible in the channel where gravitational waves ought to appear and meets the specifications for the target spectral resolution of the Virgo interferometer in the 10 Hz-10 kHz detection bandwidth.

Original languageEnglish
Article number053824
JournalPhysical Review A - Atomic, Molecular, and Optical Physics
Volume79
Issue number5
DOIs
StatePublished - May 1 2009

Fingerprint Dive into the research topics of 'Laser with an in-loop relative frequency stability of 1.0× 10-21 on a 100-ms time scale for gravitational-wave detection'. Together they form a unique fingerprint.

  • Cite this

    Acernese, F., Alshourbagy, M., Antonucci, F., Aoudia, S., Arun, K. G., Astone, P., Ballardin, G., Barone, F., Barsotti, L., Barsuglia, M., Bauer, T. S., Bigotta, S., Birindelli, S., Bizouard, M. A., Boccara, C., Bondu, F., Bonelli, L., Bosi, L., Braccini, S., ... Yvert, M. (2009). Laser with an in-loop relative frequency stability of 1.0× 10-21 on a 100-ms time scale for gravitational-wave detection. Physical Review A - Atomic, Molecular, and Optical Physics, 79(5), [053824]. https://doi.org/10.1103/PhysRevA.79.053824