TY - GEN
T1 - Laser engineered net shaping of commercially pure titanium
AU - Hu, Yingbin
AU - Wang, Hui
AU - Ning, Fuda
AU - Cong, Weilong
N1 - Publisher Copyright:
Copyright © 2016 by ASME.
PY - 2016
Y1 - 2016
N2 - Commercially pure titanium (CP-Ti) attracts a large number of attentions in biomedical, astronautical, and auto industrial areas due to its superior properties of good biocompatibility, excellent corrosion resistance, and high strength-to-weight ratio. Comparing with the conventional manufacturing processes (such as casting along with machining), laser additive manufacturing (LAM), mainly including selective laser sintering/melting (SLS/M) and laser engineered net shaping (LENS), has many advantages, such as complex shaped parts producing, more capability of shorter design-to-market time, energy consumption reducing, etc. It was reported that SLS/M has been successfully used in fabricating of CP-Ti components. Comparing with SLS/M processes, LENS has many advantages, including lower labor intensity, higher fabrication efficiency, and more capabilities for parts repairing and rebuilding. It is reported that LENS process was only used in CP-Ti coating and porous parts fabrication, there are no reported investigations on CP-Ti three-dimensional (3D) solid parts using LENS process. The investigations in this paper are going to conduct preliminary studies on effect of fabricating variables. In order to evaluate powder efficiency and parts' quality, heights of fabricated parts and hardness on the top surface of the parts will be tested.
AB - Commercially pure titanium (CP-Ti) attracts a large number of attentions in biomedical, astronautical, and auto industrial areas due to its superior properties of good biocompatibility, excellent corrosion resistance, and high strength-to-weight ratio. Comparing with the conventional manufacturing processes (such as casting along with machining), laser additive manufacturing (LAM), mainly including selective laser sintering/melting (SLS/M) and laser engineered net shaping (LENS), has many advantages, such as complex shaped parts producing, more capability of shorter design-to-market time, energy consumption reducing, etc. It was reported that SLS/M has been successfully used in fabricating of CP-Ti components. Comparing with SLS/M processes, LENS has many advantages, including lower labor intensity, higher fabrication efficiency, and more capabilities for parts repairing and rebuilding. It is reported that LENS process was only used in CP-Ti coating and porous parts fabrication, there are no reported investigations on CP-Ti three-dimensional (3D) solid parts using LENS process. The investigations in this paper are going to conduct preliminary studies on effect of fabricating variables. In order to evaluate powder efficiency and parts' quality, heights of fabricated parts and hardness on the top surface of the parts will be tested.
KW - Commercially pure titanium (CP-Ti)
KW - Input fabricating variables
KW - Laser engineered net shaping (LENS)
KW - Solid parts fabrication
UR - http://www.scopus.com/inward/record.url?scp=84991833454&partnerID=8YFLogxK
U2 - 10.1115/MSEC20168812
DO - 10.1115/MSEC20168812
M3 - Conference contribution
AN - SCOPUS:84991833454
T3 - ASME 2016 11th International Manufacturing Science and Engineering Conference, MSEC 2016
BT - Processing
PB - American Society of Mechanical Engineers
Y2 - 27 June 2016 through 1 July 2016
ER -