TY - GEN
T1 - Investigation of rock properties of the Marcellus formation – An experimental study
AU - Khalil, Rayan
AU - Emadi, Hossein
AU - Elwegaa, Khalid
N1 - Publisher Copyright:
Copyright 2019, Society of Petroleum Engineers.
Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2019
Y1 - 2019
N2 - The Marcellus formation has begun to attract more attention from the oil and gas industry. Despite being the largest shale formation and biggest source of natural gas in the United States, it has been the subject of little research. To fill this gap, this study experimentally examined the rock properties of twenty core samples from the formation. Five tests were performed on the core samples: X-ray computerized tomography (CT) scan, porosity, permeability, ultrasonic velocity, and X-ray diffraction (XRD). CT-scans were performed to identify the presence of any existing fracture(s). Additionally, helium was injected into the core samples at four different pressures (100 psi, 200 psi, 300 psi, and 400 psi) to determine the optimal pressure for porosity measurements. Complex Transient Method was employed to measure the permeabilities of the core samples. Ultrasonic velocity tests were conducted to calculate the dynamic Young's moduli (E) and the Poisson's ratios (ν) of the core samples at various confining pressures (in increments of 750 psi between 750 psi and 4,240 psi). Finally, the mineralogical compositions of the core samples were determined using the XRD test. The results of the CT-scan experiments revealed that seven core samples contained fractures. The porosity tests yielded an optimal pressure of 200 psi for porosity measurement. The measured porosities of the samples were between 6.43% and 13.85%. The permeabilities of the samples were between 5 nD and 153 nD. The results of the ultrasonic velocity tests revealed that at the confining pressure of 750 psi, the compressional velocity (Vp) ranged from 18,411 ft/s to 19,128 ft/s and the average shear velocities (Vs1 and Vs2) ranged from 10,413 ft/s to 11,034 ft/s. At the same confining pressure, the Young's modulus and Poisson's ratio ranged from 9.8 to 10.8 million psi and 0.25 to 0.28, respectively. Increase in the confining pressure resulted in increases in the Vp, Vs, Young's moduli, and Poisson's ratios of the samples. The results of the XRD test revealed that the samples were composed of calcite, quartz, and dolomite. This study is one of the first to characterize core samples obtained from the formation outcrop by performing five tests: CT-scan, porosity, permeability, ultrasonic velocity, and XRD. The results provide detailed insights to researchers working on the formation rock properties.
AB - The Marcellus formation has begun to attract more attention from the oil and gas industry. Despite being the largest shale formation and biggest source of natural gas in the United States, it has been the subject of little research. To fill this gap, this study experimentally examined the rock properties of twenty core samples from the formation. Five tests were performed on the core samples: X-ray computerized tomography (CT) scan, porosity, permeability, ultrasonic velocity, and X-ray diffraction (XRD). CT-scans were performed to identify the presence of any existing fracture(s). Additionally, helium was injected into the core samples at four different pressures (100 psi, 200 psi, 300 psi, and 400 psi) to determine the optimal pressure for porosity measurements. Complex Transient Method was employed to measure the permeabilities of the core samples. Ultrasonic velocity tests were conducted to calculate the dynamic Young's moduli (E) and the Poisson's ratios (ν) of the core samples at various confining pressures (in increments of 750 psi between 750 psi and 4,240 psi). Finally, the mineralogical compositions of the core samples were determined using the XRD test. The results of the CT-scan experiments revealed that seven core samples contained fractures. The porosity tests yielded an optimal pressure of 200 psi for porosity measurement. The measured porosities of the samples were between 6.43% and 13.85%. The permeabilities of the samples were between 5 nD and 153 nD. The results of the ultrasonic velocity tests revealed that at the confining pressure of 750 psi, the compressional velocity (Vp) ranged from 18,411 ft/s to 19,128 ft/s and the average shear velocities (Vs1 and Vs2) ranged from 10,413 ft/s to 11,034 ft/s. At the same confining pressure, the Young's modulus and Poisson's ratio ranged from 9.8 to 10.8 million psi and 0.25 to 0.28, respectively. Increase in the confining pressure resulted in increases in the Vp, Vs, Young's moduli, and Poisson's ratios of the samples. The results of the XRD test revealed that the samples were composed of calcite, quartz, and dolomite. This study is one of the first to characterize core samples obtained from the formation outcrop by performing five tests: CT-scan, porosity, permeability, ultrasonic velocity, and XRD. The results provide detailed insights to researchers working on the formation rock properties.
UR - http://www.scopus.com/inward/record.url?scp=85079773074&partnerID=8YFLogxK
U2 - 10.2118/196580-ms
DO - 10.2118/196580-ms
M3 - Conference contribution
AN - SCOPUS:85079773074
T3 - SPE Eastern Regional Meeting
BT - Society of Petroleum Engineers - SPE Eastern Regional Meeting 2019, ERM 2019
PB - Society of Petroleum Engineers (SPE)
Y2 - 15 October 2019 through 17 October 2019
ER -