Introduction to solid-fluid equilibrium modeling

Sheik Tanveer, Yifan Hao, Chau Chyun Chen

Research output: Contribution to specialist publicationArticle

12 Scopus citations


Solid-liquid equilibrium (SLE) and solid-supercritical fluid equilibrium (SFE) represent the thermodynamic limits of chemical processes involving solids. Knowledge of these critical phase-equilibrium phenomena combined with proper modeling allow for the development of processes that include the formation of polymorphs, crystallization, selective dissolution, and freezing point depression. Solid-liquid equilibrium occurs when the fugacity of the solid solute and the fugacity of the solute in the saturated liquid solution are equal. Similarly, solid-supercritical fluid equilibrium occurs when the fugacity of the solute as a solid is equal to the fugacity of the solute in the supercritical fluid. In SLE, liquid-phase fugacity is more conveniently calculated with activity coefficient models (ACMs), while in SFE, supercritical-fluid-phase fugacity is calculated with equations of state. Engineers can choose which model to apply to their simulation. Whenever a reliable thermodynamic model is established, experts identify model parameters from regression of available experimental data. Selecting an appropriate thermodynamic model plays a critical role in the success of modeling and simulation for any process in industry.

Original languageEnglish
Number of pages11
Specialist publicationChemical Engineering Progress
StatePublished - Sep 2014


Dive into the research topics of 'Introduction to solid-fluid equilibrium modeling'. Together they form a unique fingerprint.

Cite this