@inproceedings{d5b9550b5e8f48789de63c0a1218c409,
title = "Interactive learning with proactive cognition enhancement for crowd workers",
abstract = "Learning from crowds often performs in an active learning paradigm, aiming to improve learning performance quickly as well as to reduce labeling cost by selecting proper workers to (re)label critical instances. Previous active learning methods for learning from crowds do not have any proactive mechanism to effectively improve the reliability of workers, which prevents to obtain steadily rising learning curves. To help workers improve their reliability while performing tasks, this paper proposes a novel Interactive Learning framework with Proactive Cognitive Enhancement (ILPCE) for crowd workers. The ILPCE framework includes an interactive learning mechanism: When crowd workers perform labeling tasks in active learning, their cognitive ability to the specific domain can be enhanced through learning the exemplars selected by a psychological model-based machine teaching method. A novel probabilistic truth inference model and an interactive labeling scheme are proposed to ensure the effectiveness of the interactive learning mechanism and the performance of learning models can be simultaneously improved through a fast and low-cost way. Experimental results on three real-world learning tasks demonstrate that our ILPCE significantly outperforms five representative state-of-the-art methods.",
author = "Jing Zhang and Huihui Wang and Shunmei Meng and Sheng, {Victor S.}",
note = "Funding Information: This work was supported by the National Natural Science Foundation of China under grants 91846104, 61603186, 61806096, 61702264, and the Natural Science Foundation of Jiangsu Province, China, under grant BK20160843. Publisher Copyright: Copyright {\textcopyright} 2020, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.; null ; Conference date: 07-02-2020 Through 12-02-2020",
year = "2020",
language = "English",
series = "AAAI 2020 - 34th AAAI Conference on Artificial Intelligence",
publisher = "AAAI press",
pages = "540--547",
booktitle = "AAAI 2020 - 34th AAAI Conference on Artificial Intelligence",
}