Integrated multiomics analysis identifies molecular landscape perturbations during hyperammonemia in skeletal muscle and myotubes

Nicole Welch, Shashi Shekhar Singh, Avinash Kumar, Saugato Rahman Dhruba, Saurabh Mishra, Jinendiran Sekar, Annette Bellar, Amy H. Attaway, Aruna Chelluboyina, Belinda B. Willard, Ling Li, Zhiguang Huo, Sadashiva S. Karnik, Karyn Esser, Michelle S. Longworth, Yatrik M. Shah, Gangarao Davuluri, Ranadip Pal, Srinivasan Dasarathy

Research output: Contribution to journalArticlepeer-review

Abstract

Ammonia is a cytotoxic molecule generated during normal cellular functions. Dysregulated ammonia metabolism, which is evident in many chronic diseases such as liver cirrhosis, heart failure, and chronic obstructive pulmonary disease, initiates a hyperammonemic stress response in tissues including skeletal muscle and in myotubes. Perturbations in levels of specific regulatory molecules have been reported, but the global responses to hyperammonemia are unclear. In this study, we used a multiomics approach to vertically integrate unbiased data generated using an assay for transposase-accessible chromatin with high-throughput sequencing, RNA-Seq, and proteomics. We then horizontally integrated these data across different models of hyperammonemia, including myotubes and mouse and human muscle tissues. Changes in chromatin accessibility and/or expression of genes resulted in distinct clusters of temporal molecular changes including transient, persistent, and delayed responses during hyperammonemia in myotubes. Known responses to hyperammonemia, including mitochondrial and oxidative dysfunction, protein homeostasis disruption, and oxidative stress pathway activation, were enriched in our datasets. During hyperammonemia, pathways that impact skeletal muscle structure and function that were consistently enriched were those that contribute to mitochondrial dysfunction, oxidative stress, and senescence. We made several novel observations, including an enrichment in antiapoptotic B-cell leukemia/lymphoma 2 family protein expression, increased calcium flux, and increased protein glycosylation in myotubes and muscle tissue upon hyperammonemia. Critical molecules in these pathways were validated experimentally. Human skeletal muscle from patients with cirrhosis displayed similar responses, establishing translational relevance. These data demonstrate complex molecular interactions during adaptive and maladaptive responses during the cellular stress response to hyperammonemia.

Original languageEnglish
Article number101023
JournalJournal of Biological Chemistry
Volume297
Issue number3
DOIs
StatePublished - Sep 1 2021

Fingerprint

Dive into the research topics of 'Integrated multiomics analysis identifies molecular landscape perturbations during hyperammonemia in skeletal muscle and myotubes'. Together they form a unique fingerprint.

Cite this