TY - JOUR
T1 - Initial Value Problems of the Sine-Gordon Equation and Geometric Solutions
AU - Toda, Magdalena
PY - 2005
Y1 - 2005
N2 - Recent results using inverse scattering techniques interpret every solution φ(x, y) of the sine-Gordon equation as a nonlinear superposition of solutions along the axes x=0 and y=0. This has a well-known geometric interpretation, namely that every weakly regular surface of Gauss curvature K=−1, in arc length asymptotic line parametrization, is uniquely determined by the values φ(x, 0) and φ(0, y) of its coordinate angle along the axes. We introduce a generalized Weierstrass representation of pseudospherical surfaces that depends only on these values, and we explicitely construct the associated family of pseudospherical immersions corresponding to it.
AB - Recent results using inverse scattering techniques interpret every solution φ(x, y) of the sine-Gordon equation as a nonlinear superposition of solutions along the axes x=0 and y=0. This has a well-known geometric interpretation, namely that every weakly regular surface of Gauss curvature K=−1, in arc length asymptotic line parametrization, is uniquely determined by the values φ(x, 0) and φ(0, y) of its coordinate angle along the axes. We introduce a generalized Weierstrass representation of pseudospherical surfaces that depends only on these values, and we explicitely construct the associated family of pseudospherical immersions corresponding to it.
M3 - Article
JO - Annals of Global Analysis and Geometry (Springer Netherlands)
JF - Annals of Global Analysis and Geometry (Springer Netherlands)
ER -