Improved Heart Rate Tracking Using Multiple Wrist-type Photoplethysmography during Physical Activities

Lianning Zhu, Dongping Du

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Photoplethysmography (PPG) signals collected from wearable sensing devices during physical exercise are easily corrupted by motion artifact (MA), which poses great challenge on heart rate (HR) estimation. This paper proposes a new framework to accurately estimate HR using two leads of PPG signals in combination with accelerometer (ACC) data in the presence of MA. A moving time window is first used to segment PPG signals and ACC signals. Then, MA is attenuated by joint sparse spectrum reconstruction in each time window, where maximum spectrum frequencies of ACC are subtracted from the spectrum frequency of PPG signals. Further, HR for each cleansed PPG is estimated from the frequency with maximum amplitude in the sparse spectrum. The actual HR is determined using spectral band powers calculated from each reconstructed PPG signals. The proposed method was validated using the 2015 IEEE Signal Processing Cup dataset. The average absolute error is 1.15 beats per minutes (BPM) (standard deviation: 2.00 BPM), and the average absolute error percentage is 0.95% (standard deviation: 1.86%). The proposed method outperforms the previously reported work in terms of accuracy.

Original languageEnglish
Title of host publication40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2018
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1-4
Number of pages4
ISBN (Electronic)9781538636466
DOIs
StatePublished - Oct 26 2018
Event40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2018 - Honolulu, United States
Duration: Jul 18 2018Jul 21 2018

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
Volume2018-July
ISSN (Print)1557-170X

Conference

Conference40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2018
Country/TerritoryUnited States
CityHonolulu
Period07/18/1807/21/18

Fingerprint

Dive into the research topics of 'Improved Heart Rate Tracking Using Multiple Wrist-type Photoplethysmography during Physical Activities'. Together they form a unique fingerprint.

Cite this