Impact sensitivity of variable density composite energetic materials

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review


High density intermetallic composites are being considered as a replacement for kinetic energy projectiles in ordnance applications. These composites release a large amount of chemical energy upon penetration and provide an enhanced blast effect on the target; in comparison to inert projectiles. A fundamental understanding of the response to mechanical initiation as a function of the composite's compositional and bulk density are presented for aluminum-based intermetallics. Composites ranged in compositional density from 3.5 to 17.9 g/cc and included Al-Ti, Al-Ni, AlW, Al-Hf, Al-Zn pressed to bulk densities that ranged from 50 to 80 % of the theoretical maximum. Aluminum particle size was also investigated and ranged from nanometer to micronscale spherical diameters. Ignition was stimulated via a modified type-12 impact tester used to measure the sensitivity of the composite to drop-weight impact. The tests were recorded using high-speed thermal imaging to ensure a positive reaction. Results show that the nano Al particle composites are more sensitive to impact ignition than their micron scale counterparts. Generally, as bulk density increases, the samples become increasingly sensitive to ignition and display on average a 70% decrease in ignition energy. Compositional density also plays a critical role in ignition energy, As the density of the composite increases, regardless of the Al particle size, the composites become more sensitive to ignition. Results show that at the same bulk density, higher density composites such as Al-W require 80% less ignition energy than lower density composites such as Al-Ti (1.01 cm compared with 0.34 cm, respectively).

Original languageEnglish
Title of host publicationMaterials Research Society Symposium Proceedings - Nano- and Microscale Materials-Mechanical Properties and Behavior under Extreme Environments
PublisherMaterials Research Society
Number of pages10
ISBN (Print)9781615673865
StatePublished - 2008
EventNano- and Microscale Materials-Mechanical Properties and Behavior under Extreme Environments - Boston, MA, United States
Duration: Dec 1 2008Dec 5 2008

Publication series

NameMaterials Research Society Symposium Proceedings
ISSN (Print)0272-9172


ConferenceNano- and Microscale Materials-Mechanical Properties and Behavior under Extreme Environments
Country/TerritoryUnited States
CityBoston, MA


Dive into the research topics of 'Impact sensitivity of variable density composite energetic materials'. Together they form a unique fingerprint.

Cite this