Immunization by vaccine-coated microneedle arrays protects against lethal influenza virus challenge

Q. Zhu, V. G. Zarnitsyn, L. Ye, Z. Wen, Y. Gao, L. Pan, I. Skountzou, Harvinder Gill, M. R. Prausnitz, C. Yang, R. W. Compans

Research output: Contribution to journalArticlepeer-review


Influenza prophylaxis would benefit from a simple method to administer influenza vaccine into skin without the need for hypodermic needles. In this study, solid metal microneedle arrays (MNs) were investigated as a system for cutaneous vaccine delivery using influenza virus antigen. The MNs with 5 monument-shaped microneedles per array were produced and coated with inactivated influenza virus A/PR/8/34 (IIV). As much as 10 microg of viral proteins could be coated onto an array of 5 microneedles, and the coated IIV was delivered into skin at high efficiency within minutes. The coated MNs were used to immunize mice in comparison with conventional intramuscular injection at the same dose. Analysis of immune responses showed that a single immunization with IIV-coated MNs induced strong antibody responses against influenza virus, with significant levels of hemagglutination inhibition activities (>1:40), which were comparable to those induced by conventional intramuscular immunization. More
Original languageEnglish
Pages (from-to)7968-73
JournalProc Natl Acad Sci U S A
StatePublished - 2009


Dive into the research topics of 'Immunization by vaccine-coated microneedle arrays protects against lethal influenza virus challenge'. Together they form a unique fingerprint.

Cite this