TY - JOUR
T1 - Identification of exercise capacity QTL using association mapping in inbred mice
AU - Courtney, Sean M.
AU - Massett, Michael P.
PY - 2012/10/2
Y1 - 2012/10/2
N2 - There are large interindividual differences in exercise capacity. It is well established that there is a genetic basis for these differences. However, the genetic factors underlying this variation are undefined. Therefore, the purpose of this study was to identify novel putative quantitative trait loci (QTL) for exercise capacity by measuring exercise capacity in inbred mice and performing genome-wide association mapping. Exercise capacity, defined as run time and work, was assessed in male mice (n 6) from 34 strains of classical and wild-derived inbred mice performing a graded treadmill test. Genome-wide association mapping was performed with an efficient mixed-model association (EMMA) algorithm to identify QTL. Exercise capacity was significantly different across strains. Run time varied by 2.7-fold between the highest running strain (C58/J) and the lowest running strain (A/J). These same strains showed a 16.5-fold difference in work. Significant associations were identified for exercise time on chromosomes 1, 2, 7, 11, and 13. The QTL interval on chromosome 2 (~168 Mb) contains one gene, Nfatc2, and overlaps with a suggestive QTL for training responsiveness in humans. These results provide phenotype data on the widest range of inbred strains tested thus far and indicate that genetic background significantly influences exercise capacity. Furthermore, the novel QTLs identified in the current study provide new targets for investigating the underlying mechanisms for variation in exercise capacity.
AB - There are large interindividual differences in exercise capacity. It is well established that there is a genetic basis for these differences. However, the genetic factors underlying this variation are undefined. Therefore, the purpose of this study was to identify novel putative quantitative trait loci (QTL) for exercise capacity by measuring exercise capacity in inbred mice and performing genome-wide association mapping. Exercise capacity, defined as run time and work, was assessed in male mice (n 6) from 34 strains of classical and wild-derived inbred mice performing a graded treadmill test. Genome-wide association mapping was performed with an efficient mixed-model association (EMMA) algorithm to identify QTL. Exercise capacity was significantly different across strains. Run time varied by 2.7-fold between the highest running strain (C58/J) and the lowest running strain (A/J). These same strains showed a 16.5-fold difference in work. Significant associations were identified for exercise time on chromosomes 1, 2, 7, 11, and 13. The QTL interval on chromosome 2 (~168 Mb) contains one gene, Nfatc2, and overlaps with a suggestive QTL for training responsiveness in humans. These results provide phenotype data on the widest range of inbred strains tested thus far and indicate that genetic background significantly influences exercise capacity. Furthermore, the novel QTLs identified in the current study provide new targets for investigating the underlying mechanisms for variation in exercise capacity.
KW - Quantitative trait loci
KW - Single nucleotide polymorphism
KW - Treadmill running
KW - Wild-derived inbred strains
UR - http://www.scopus.com/inward/record.url?scp=84867156147&partnerID=8YFLogxK
U2 - 10.1152/physiolgenomics.00051.2012
DO - 10.1152/physiolgenomics.00051.2012
M3 - Article
C2 - 22911454
AN - SCOPUS:84867156147
SN - 1094-8341
VL - 44
SP - 948
EP - 955
JO - Physiological Genomics
JF - Physiological Genomics
IS - 19
ER -