Higher order variability properties of accreting black holes

Thomas J. Maccarone, Paolo S. Coppi

Research output: Contribution to journalArticlepeer-review

32 Scopus citations


To better constrain the emission mechanism underlying the hard state of galactic black hole candidates, we use high-time resolution RXTE light curves for Cyg X-1 and GX 339-4 to compute two higher order variability statistics for these objects, the skewness and the Fourier bispectrum. Similar analyses, in particular using the skewness measure, have been attempted previously, but the photon collection area of RXTE allows us to present results of much greater statistical significance. The results for the two objects are qualitatively similar, reinforcing the idea that the same basic mechanisms are at work in both. We find a significantly positive skewness for variability time-scales less than ∼ 1 s, and a negative skewness for time-scales from 1 to 5 s. Such a skewness pattern cannot be reproduced by the simplest shot variability models where individual shots have a fixed profile and intensity and are uncorrelated in time. Further evidence against simple-shot models comes from the significant detection of a non-zero bicoherence for Fourier periods ∼0.1-10 s, implying that significant coupling does exist between variations on these time-scales. We discuss how current popular models for variability in black hole systems can be modified to match these observations. Using simulated light curves, we suggest that the most likely way to reproduce this observed behaviour is to have the variability come in groups of many shots, with the number of shots per unit time fitting an envelope function that has a rapid rise and a slow decay, while the individual shots have a slow rise and a rapid decay. Invoking a finite-energy reservoir that is depleted by each shot is a natural way of producing the required shot correlations.

Original languageEnglish
Pages (from-to)817-825
Number of pages9
JournalMonthly Notices of the Royal Astronomical Society
Issue number3
StatePublished - Nov 1 2002


  • Accretion, accretion discs
  • Methods: statistical
  • X-rays: binaries
  • X-rays: individual: Cygnus X-1
  • X-rays: individual: GX 339-4


Dive into the research topics of 'Higher order variability properties of accreting black holes'. Together they form a unique fingerprint.

Cite this