TY - JOUR
T1 - Higher Glucose Enhances Breast Cancer Cell Aggressiveness
AU - Santos, Julianna M.
AU - Hussain, Fazle
N1 - Funding Information:
This study was supported by startup funds under “President’s Distinguished Chair in Engineering and Science”, Texas Tech University. We thank Dr. Z.S. Khan for the critical review of our manuscript.
Publisher Copyright:
© 2019, © 2019 Taylor & Francis Group, LLC.
PY - 2020/7/3
Y1 - 2020/7/3
N2 - Cancer cells overexpress several transcription factors and motor proteins, such as NFkB and kinesin, to accommodate their high energy demand as well as migratory needs via enhanced glycolysis. We hypothesize that high glucose drives cancer progression and cell aggressiveness by decreasing actin expression, increasing NFkB, and kinesin expressions, and by activating Epithelial Mesenchymal Transition (EMT). Using lowly metastatic MCF-7 and highly metastatic MDA-MB231 (MB231) breast cancer cells–highly incident cancer types–we establish how glucose metabolism regulates actin and the biochemical changes that lead to alterations of cell mechanical properties. We find that higher glucose (15 and 30 mM) increases glycolytic enzymes, glucose uptake, migration speed, kinesin, Ki-67, and NFkB expressions (biomarkers), and hybrid EMT phenotype activation (adhesion molecules/cadherins). Downregulation of actin, increased expressions of motor protein and NFkB, and decreased nuclear stiffness–induced by higher glucose–result in a significant increase in the migration speed. Moreover, glucose deprivation using the glucose analog 2-deoxyglucose decreases significantly the migration speed in both cancer cells. Thus, higher glucose promotes a more aggressive phenotype that promises to be a new target for cancer therapy and can help prevent cancer progression in diabetic patients by inhibiting glucose activated mechanisms.
AB - Cancer cells overexpress several transcription factors and motor proteins, such as NFkB and kinesin, to accommodate their high energy demand as well as migratory needs via enhanced glycolysis. We hypothesize that high glucose drives cancer progression and cell aggressiveness by decreasing actin expression, increasing NFkB, and kinesin expressions, and by activating Epithelial Mesenchymal Transition (EMT). Using lowly metastatic MCF-7 and highly metastatic MDA-MB231 (MB231) breast cancer cells–highly incident cancer types–we establish how glucose metabolism regulates actin and the biochemical changes that lead to alterations of cell mechanical properties. We find that higher glucose (15 and 30 mM) increases glycolytic enzymes, glucose uptake, migration speed, kinesin, Ki-67, and NFkB expressions (biomarkers), and hybrid EMT phenotype activation (adhesion molecules/cadherins). Downregulation of actin, increased expressions of motor protein and NFkB, and decreased nuclear stiffness–induced by higher glucose–result in a significant increase in the migration speed. Moreover, glucose deprivation using the glucose analog 2-deoxyglucose decreases significantly the migration speed in both cancer cells. Thus, higher glucose promotes a more aggressive phenotype that promises to be a new target for cancer therapy and can help prevent cancer progression in diabetic patients by inhibiting glucose activated mechanisms.
UR - http://www.scopus.com/inward/record.url?scp=85070963223&partnerID=8YFLogxK
U2 - 10.1080/01635581.2019.1654527
DO - 10.1080/01635581.2019.1654527
M3 - Article
C2 - 31437005
AN - SCOPUS:85070963223
SN - 0163-5581
VL - 72
SP - 734
EP - 746
JO - Nutrition and Cancer
JF - Nutrition and Cancer
IS - 5
ER -