TY - JOUR
T1 - High-frequency effective viscosity of a dilute suspension of particles in Poiseuille flow between parallel walls
AU - Feuillebois, François
AU - Ekiel-Jezewska, Maria L.
AU - Wajnryb, Eligiusz
AU - Sellier, Antoine
AU - Bławzdziewicz, Jerzy
N1 - Funding Information:
E.W. and M.L.E.-J. were supported in part by the Polish NCN grant no. 2012/05/B/ST8/03010. M.L.E.-J. benefited from the scientific activities of the COST Action MP1305.
Publisher Copyright:
© 2016 Cambridge University Press.
PY - 2016/8/10
Y1 - 2016/8/10
N2 - It is shown that the formal expression for the effective viscosity of a dilute suspension of arbitrary-shaped particles in Poiseuille flow contains a novel quadrupole term, besides the expected stresslet. This term becomes important for a very confined geometry. For a high-frequency flow field (in the sense used in Feuillebois et al. (J. Fluid Mech., vol. 764, 2015, pp. 133-147), the suspension rheology is Newtonian at first order in volume fraction. The effective viscosity is calculated for suspensions of -bead rods and of prolate spheroids with the same length, volume and aspect ratio (up to 6), entrained by the Poiseuille flow between two infinite parallel flat hard walls. The numerical computations, based on solving the Stokes equations, indicate that the quadrupole term gives a significant positive contribution to the intrinsic viscosity if the distance between the walls is less than ten times the particle width, or less. It is found that the intrinsic viscosity in bounded Poiseuille flow is generally smaller than the corresponding value in unbounded flow, except for extremely narrow gaps when it becomes larger because of lubrication effects. The intrinsic viscosity is at a minimum for a gap between walls of the order of 1.5-2 particle width. For spheroids, the intrinsic viscosity is generally smaller than for chains of beads with the same aspect ratio, but when normalized by its value in the bulk, the results are qualitatively the same. Therefore, a rigid chain of beads can serve as a simple model of an orthotropic particle with a more complicated shape. The important conclusion is that the intrinsic viscosity in shear flow is larger than in the Poiseuille flow between two walls, and the difference is significant even for relatively wide channels, e.g. three times wider than the particle length. For such confined geometries, the hydrodynamic interactions with the walls are significant and should be taken into account.
AB - It is shown that the formal expression for the effective viscosity of a dilute suspension of arbitrary-shaped particles in Poiseuille flow contains a novel quadrupole term, besides the expected stresslet. This term becomes important for a very confined geometry. For a high-frequency flow field (in the sense used in Feuillebois et al. (J. Fluid Mech., vol. 764, 2015, pp. 133-147), the suspension rheology is Newtonian at first order in volume fraction. The effective viscosity is calculated for suspensions of -bead rods and of prolate spheroids with the same length, volume and aspect ratio (up to 6), entrained by the Poiseuille flow between two infinite parallel flat hard walls. The numerical computations, based on solving the Stokes equations, indicate that the quadrupole term gives a significant positive contribution to the intrinsic viscosity if the distance between the walls is less than ten times the particle width, or less. It is found that the intrinsic viscosity in bounded Poiseuille flow is generally smaller than the corresponding value in unbounded flow, except for extremely narrow gaps when it becomes larger because of lubrication effects. The intrinsic viscosity is at a minimum for a gap between walls of the order of 1.5-2 particle width. For spheroids, the intrinsic viscosity is generally smaller than for chains of beads with the same aspect ratio, but when normalized by its value in the bulk, the results are qualitatively the same. Therefore, a rigid chain of beads can serve as a simple model of an orthotropic particle with a more complicated shape. The important conclusion is that the intrinsic viscosity in shear flow is larger than in the Poiseuille flow between two walls, and the difference is significant even for relatively wide channels, e.g. three times wider than the particle length. For such confined geometries, the hydrodynamic interactions with the walls are significant and should be taken into account.
KW - low-Reynolds-number flows
UR - http://www.scopus.com/inward/record.url?scp=84976582520&partnerID=8YFLogxK
U2 - 10.1017/jfm.2016.378
DO - 10.1017/jfm.2016.378
M3 - Article
AN - SCOPUS:84976582520
VL - 800
SP - 111
EP - 139
JO - Journal of Fluid Mechanics
JF - Journal of Fluid Mechanics
SN - 0022-1120
ER -