Haptic controlled three-axis MEMS gripper system

Ashwin P. Vijayasai, Ganapathy Sivakumar, Matthew Mulsow, Shelby Lacouture, Alex Holness, Tim E. Dallas

Research output: Contribution to journalArticle

12 Scopus citations

Abstract

In this work, we describe the development and testing of a three degree of freedom meso/micromanipulation system for handling micro-objects, including biological cells and microbeads. Three-axis control is obtained using stepper motors coupled to micromanipulators. The test specimen is placed on a linear X-stage, which is coupled to one stepper motor. The remaining two stepper motors are coupled to the Y and Z axes of a micromanipulator. The stepper motor-micromanipulator arrangement in the Y and Z axes has a minimum step resolution of ∼0.4 μm with a total travel of 12 mm and the stepper motor-X stage arrangement has a minimum resolution of ∼0.3 μm with a total travel of 10 mm. Mechanical backlash error is ∼0.8 μm for ∼750 μm of travel. A MEMS microgripper from Femtotools acts as an end-effector in the shaft end of the micromanipulator. The gripping ranges of the grippers used are 0-100 μm (for FT-G100) and 0-60 μm (for FT-G60). As the gripping action is performed, the force sense circuit of FT-G100 measures the handling force. This force feedback is integrated to a commercially available three degree of freedom haptic device (Novint Falcon) allowing the user to receive tactile feedback during the microscale handling. Both mesoscale and microscale controls are important, as mesoscale control is required for the travel motion of the test object whereas microscale control is required for the gripping action. The haptic device is used to control the position of the microgripper, control the actuation of the microgripper, and provide force feedback. A LABVIEW program was developed to interlink communication and control among hardware used in the system. Micro-objects such as SF-9 cells and polystyrene beads (∼45 μm) are handled and handling forces of ∼50 μN were experienced.

Original languageEnglish
Article number105114
JournalReview of Scientific Instruments
Volume81
Issue number10
DOIs
StatePublished - Oct 2010

Fingerprint Dive into the research topics of 'Haptic controlled three-axis MEMS gripper system'. Together they form a unique fingerprint.

  • Cite this

    Vijayasai, A. P., Sivakumar, G., Mulsow, M., Lacouture, S., Holness, A., & Dallas, T. E. (2010). Haptic controlled three-axis MEMS gripper system. Review of Scientific Instruments, 81(10), [105114]. https://doi.org/10.1063/1.3499243