TY - JOUR
T1 - Gorenstein weak global dimension is symmetric
AU - Christensen, Lars Winther
AU - Estrada, Sergio
AU - Thompson, Peder
N1 - Funding Information:
L. W. C. was partly supported by Simons Foundation collaboration grant 428308. S. E. was partly supported by grant PID2020‐113206GB‐I00/AEI/10.13039/501100011033 and by the grant 19880/GERM/15 from the Fundación Séneca‐Agencia de Ciencia y Tecnología de la Región de Murcia. We thank the referee for pertinent suggestions that improved the exposition.
Funding Information:
L. W. C. was partly supported by Simons Foundation collaboration grant 428308. S. E. was partly supported by grant PID2020-113206GB-I00/AEI/10.13039/501100011033 and by the grant 19880/GERM/15 from the Fundaci?n S?neca-Agencia de Ciencia y Tecnolog?a de la Regi?n de Murcia. We thank the referee for pertinent suggestions that improved the?exposition.
Publisher Copyright:
© 2021 Wiley-VCH GmbH
PY - 2021/11
Y1 - 2021/11
N2 - We study the Gorenstein weak global dimension of associative rings and its relation to the Gorenstein global dimension. In particular, we prove the conjecture that the Gorenstein weak global dimension is a left-right symmetric invariant – just like the (absolute) weak global dimension.
AB - We study the Gorenstein weak global dimension of associative rings and its relation to the Gorenstein global dimension. In particular, we prove the conjecture that the Gorenstein weak global dimension is a left-right symmetric invariant – just like the (absolute) weak global dimension.
UR - http://www.scopus.com/inward/record.url?scp=85118553080&partnerID=8YFLogxK
U2 - 10.1002/mana.202100141
DO - 10.1002/mana.202100141
M3 - Article
AN - SCOPUS:85118553080
SN - 0025-584X
VL - 294
SP - 2121
EP - 2128
JO - Mathematische Nachrichten
JF - Mathematische Nachrichten
IS - 11
ER -