Gibberellin biosynthesis and signal transduction is essential for internode elongation in deepwater rice

Madoka Ayano, Takahiro Kani, Mikiko Kojima, Hitoshi Sakakibara, Takuya Kitaoka, Takeshi Kuroha, Rosalyn B. Angeles-Shim, Hidemi Kitano, Keisuke Nagai, Motoyuki Ashikari

Research output: Contribution to journalArticle

48 Scopus citations

Abstract

Under flooded conditions, the leaves and internodes of deepwater rice can elongate above the water surface to capture oxygen and prevent drowning. Our previous studies showed that three major quantitative trait loci (QTL) regulate deepwater-dependent internode elongation in deepwater rice. In this study, we investigated the age-dependent internode elongation in deepwater rice. We also investigated the relationship between deepwater-dependent internode elongation and the phytohormone gibberellin (GA) by physiological and genetic approach using a QTL pyramiding line (NIL-1+3+12). Deepwater rice did not show internode elongation before the sixth leaf stage under deepwater condition. Additionally, deepwater-dependent internode elongation occurred on the sixth and seventh internodes during the sixth leaf stage. These results indicate that deepwater rice could not start internode elongation until the sixth leaf stage. Ultra-performance liquid chromatography tandem mass-spectrometry (UPLC-MS/MS) method for the phytohormone contents showed a deepwater-dependent GA1 and GA4 accumulation in deepwater rice. Additionally, a GA inhibitor abolished deepwater-dependent internode elongation in deepwater rice. On the contrary, GA feeding mimicked internode elongation under ordinary growth conditions. However, mutations in GA biosynthesis and signal transduction genes blocked deepwater-dependent internode elongation. These data suggested that GA biosynthesis and signal transduction are essential for deepwater-dependent internode elongation in deepwater rice.

Original languageEnglish
Pages (from-to)2313-2324
Number of pages12
JournalPlant, Cell and Environment
Volume37
Issue number10
DOIs
StatePublished - Oct 1 2014

Keywords

  • Gibberellin

Fingerprint Dive into the research topics of 'Gibberellin biosynthesis and signal transduction is essential for internode elongation in deepwater rice'. Together they form a unique fingerprint.

  • Cite this

    Ayano, M., Kani, T., Kojima, M., Sakakibara, H., Kitaoka, T., Kuroha, T., Angeles-Shim, R. B., Kitano, H., Nagai, K., & Ashikari, M. (2014). Gibberellin biosynthesis and signal transduction is essential for internode elongation in deepwater rice. Plant, Cell and Environment, 37(10), 2313-2324. https://doi.org/10.1111/pce.12377