TY - JOUR
T1 - Genetic factors underlie the association between anxiety, attitudes and performance in mathematics
AU - Malanchini, Margherita
AU - Rimfeld, Kaili
AU - Wang, Zhe
AU - Petrill, Stephen A.
AU - Tucker-Drob, Elliot M.
AU - Plomin, Robert
AU - Kovas, Yulia
N1 - Funding Information:
We gratefully acknowledge the on-going contribution of the participants in the Twins Early Development Study (TEDS) and their families. TEDS is supported by a program grant to R.P. from the UK Medical Research Council [MR/M021475/1 and previously G0901245], with additional support from the US National Institutes of Health [HD044454; HD059215]. M.M.’s work is partly supported by the David Wechsler Early Career grant for innovative work in cognition and by NIH grant R01HD083613 awarded to E.T.D. Y.K.’s work is supported by the Tomsk State University competitiveness improvement programme. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Publisher Copyright:
© 2020, The Author(s).
PY - 2020/12/1
Y1 - 2020/12/1
N2 - Students struggling with mathematics anxiety (MA) tend to show lower levels of mathematics self-efficacy and interest as well as lower performance. The current study addresses: (1) how MA relates to different aspects of mathematics attitudes (self-efficacy and interest), ability (understanding numbers, problem-solving ability, and approximate number sense) and achievement (exam scores); (2) to what extent these observed relations are explained by overlapping genetic and environmental factors; and (3) the role of general anxiety in accounting for these associations. The sample comprised 3410 twin pairs aged 16–21 years, from the Twins Early Development Study. Negative associations of comparable strength emerged between MA and the two measures of mathematics attitudes, phenotypically (~ −0.45) and genetically (~ −0.70). Moderate negative phenotypic (~ −0.35) and strong genetic (~ −0.70) associations were observed between MA and measures of mathematics performance. The only exception was approximate number sense whose phenotypic (−0.10) and genetic (−0.31) relation with MA was weaker. Multivariate quantitative genetic analyses indicated that all mathematics-related measures combined accounted for ~75% of the genetic variance in MA and ~20% of its environmental variance. Genetic effects were largely shared across all measures of mathematics anxiety, attitudes, abilities and achievement, with the exception of approximate number sense. This genetic overlap was not accounted for by general anxiety. These results have important implications for future genetic research concerned with identifying the genetic underpinnings of individual variation in mathematics-related traits, as well as for developmental research into how children select and modify their mathematics-related experiences partly based on their genetic predispositions.
AB - Students struggling with mathematics anxiety (MA) tend to show lower levels of mathematics self-efficacy and interest as well as lower performance. The current study addresses: (1) how MA relates to different aspects of mathematics attitudes (self-efficacy and interest), ability (understanding numbers, problem-solving ability, and approximate number sense) and achievement (exam scores); (2) to what extent these observed relations are explained by overlapping genetic and environmental factors; and (3) the role of general anxiety in accounting for these associations. The sample comprised 3410 twin pairs aged 16–21 years, from the Twins Early Development Study. Negative associations of comparable strength emerged between MA and the two measures of mathematics attitudes, phenotypically (~ −0.45) and genetically (~ −0.70). Moderate negative phenotypic (~ −0.35) and strong genetic (~ −0.70) associations were observed between MA and measures of mathematics performance. The only exception was approximate number sense whose phenotypic (−0.10) and genetic (−0.31) relation with MA was weaker. Multivariate quantitative genetic analyses indicated that all mathematics-related measures combined accounted for ~75% of the genetic variance in MA and ~20% of its environmental variance. Genetic effects were largely shared across all measures of mathematics anxiety, attitudes, abilities and achievement, with the exception of approximate number sense. This genetic overlap was not accounted for by general anxiety. These results have important implications for future genetic research concerned with identifying the genetic underpinnings of individual variation in mathematics-related traits, as well as for developmental research into how children select and modify their mathematics-related experiences partly based on their genetic predispositions.
UR - http://www.scopus.com/inward/record.url?scp=85079575722&partnerID=8YFLogxK
U2 - 10.1038/s41398-020-0711-3
DO - 10.1038/s41398-020-0711-3
M3 - Article
C2 - 32066693
AN - SCOPUS:85079575722
VL - 10
JO - Translational Psychiatry
JF - Translational Psychiatry
SN - 2158-3188
IS - 1
M1 - 12
ER -