Gaussian Process-Based Spatiotemporal Modeling of Electrical Wave Propagation in Human Atrium

Zhiyong Hu, Dongping Du, Yuncheng Du

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Rhythm regularity of the heart depends on how electrical impulses spread through the cardiac conduction system. Any abnormal activities in the electrical impulses can lead to serious cardiac disorders or sudden death. It is important to understand the electrical activities of the human heart in both healthy and diseased conditions to determine the cause of cardiac disorders and explore the best therapeutic designs. Mathematical models calibrated with clinical and/or in-vitro data are popularly used to study cardiac function and investigate treatment effects. Most of the current human heart models are highly integrated and couple over a hundred equations across different organizational scales of ion channel, cell, and muscle. The model complex poses a significant computational challenge on cardiac simulation. This study developed a metamodel to replace the time-consuming simulation model. Specifically, Gaussian Process (GP) is used to reconstruct the spatiotemporal variations of the cell membrane potential in left atrium. Four different covariance functions were used to infer the potential distributions. The GP model provides an accurate estimation of the spatiotemporal propagation of electrical waves with a small set of data and shows great advantage in computations as compared to traditional models.

Original languageEnglish
Title of host publication42nd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society
Subtitle of host publicationEnabling Innovative Technologies for Global Healthcare, EMBC 2020
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2602-2605
Number of pages4
ISBN (Electronic)9781728119908
DOIs
StatePublished - Jul 2020
Event42nd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society, EMBC 2020 - Montreal, Canada
Duration: Jul 20 2020Jul 24 2020

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
Volume2020-July
ISSN (Print)1557-170X

Conference

Conference42nd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society, EMBC 2020
Country/TerritoryCanada
CityMontreal
Period07/20/2007/24/20

Fingerprint

Dive into the research topics of 'Gaussian Process-Based Spatiotemporal Modeling of Electrical Wave Propagation in Human Atrium'. Together they form a unique fingerprint.

Cite this