TY - JOUR
T1 - Gas-phase chemical dynamics simulations on the bifurcating pathway of the pimaradienyl cation rearrangement
T2 - Role of enzymatic steering in abietic acid biosynthesis
AU - Siebert, Matthew R.
AU - Manikandan, Paranjothy
AU - Sun, Rui
AU - Tantillo, Dean J.
AU - Hase, William L.
PY - 2012/4/10
Y1 - 2012/4/10
N2 - The biosynthesis of abietadiene is the first biosynthetically relevant process shown to involve a potential energy surface with a bifurcating reaction pathway. Herein, we use gas-phase, enzyme-free direct dynamics simulations to study the behavior of the key reaction (bifurcating) step, which is conversion of the C 20 pimaradienyl cation to the abietadienyl cation. In a previous study (J. Am. Chem. Soc.2011, 133, 8335), a truncated C 10 model was used to investigate this reaction. The current work finds that the complete C 20 pimaradienyl cation gives reaction dynamics similar to that reported for the truncated C 10 model. We find that in the absence of the enzyme, the C 20 abietadienyl cation is generated in almost equal quantity (1.3:1) as an unobserved (in nature) seven-membered ring product. These simulations allude to a need for abietadiene synthase to steer the reaction to avoid generation of the seven-membered ring product. The methodology of post-transition state chemical dynamics simulations is also considered. The trajectories are initiated at the rate-controlling transition state (TS) separating the pimaradienyl and abietadienyl cations. Accurate results are expected for the short-time direct motion from this TS toward the abietadienyl cation. However, the dynamics may be less accurate for describing the unimolecular reactions that occur in moving toward the pimaradienyl cation, due to the unphysical flow of zero-point energy.
AB - The biosynthesis of abietadiene is the first biosynthetically relevant process shown to involve a potential energy surface with a bifurcating reaction pathway. Herein, we use gas-phase, enzyme-free direct dynamics simulations to study the behavior of the key reaction (bifurcating) step, which is conversion of the C 20 pimaradienyl cation to the abietadienyl cation. In a previous study (J. Am. Chem. Soc.2011, 133, 8335), a truncated C 10 model was used to investigate this reaction. The current work finds that the complete C 20 pimaradienyl cation gives reaction dynamics similar to that reported for the truncated C 10 model. We find that in the absence of the enzyme, the C 20 abietadienyl cation is generated in almost equal quantity (1.3:1) as an unobserved (in nature) seven-membered ring product. These simulations allude to a need for abietadiene synthase to steer the reaction to avoid generation of the seven-membered ring product. The methodology of post-transition state chemical dynamics simulations is also considered. The trajectories are initiated at the rate-controlling transition state (TS) separating the pimaradienyl and abietadienyl cations. Accurate results are expected for the short-time direct motion from this TS toward the abietadienyl cation. However, the dynamics may be less accurate for describing the unimolecular reactions that occur in moving toward the pimaradienyl cation, due to the unphysical flow of zero-point energy.
UR - http://www.scopus.com/inward/record.url?scp=84859587477&partnerID=8YFLogxK
U2 - 10.1021/ct300037p
DO - 10.1021/ct300037p
M3 - Article
AN - SCOPUS:84859587477
VL - 8
SP - 1212
EP - 1222
JO - Journal of Chemical Theory and Computation
JF - Journal of Chemical Theory and Computation
SN - 1549-9618
IS - 4
ER -