Abstract
We present numerical computations for single phase flow through three-dimensional digitized rock fractures under varied simulated confining pressures appropriate to midcrustal depths. The computations are performed using a finite difference, lattice Boltzmann method and thus simulate Navier-Stokes flow. The digitized fracture data sets come from profiled elevations taken on tensile induced fractures in Harcourt granite. Numerical predictions of fracture permeability are compared with laboratory measurements performed on the same fractures. Use of the finite difference lattice Boltzmann method allows computation on nonuniform grid spacing, enabling accurate resolution across the aperture width without extensive refinement in the other two directions.
Original language | English |
---|---|
Pages (from-to) | 9 |
Number of pages | 1 |
Journal | Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics |
Volume | 67 |
Issue number | 4 |
DOIs | |
State | Published - 2003 |