Formamide as the Model Compound for Photodissociation Studies of the Peptide Bond

Mirjana Eckert-Maksić, Ivana Antol, Mario Vazdar, Mario Barbatti, Hans Lischka

Research output: Chapter in Book/Report/Conference proceedingChapterpeer-review

9 Scopus citations


Dynamics simulations are an essential step in exploring ultrafast phenomena in photochemistry and photobiology. In this chapter we present results of photodynamics studies for some model compounds for the peptide bond using the on-the-fly surface hopping method. The mechanism of photodissociation of formamide, its protonated forms and methyl substituted derivatives in their lowest singlet excited states in the gas phase is discussed in detail. Merits and demerits of using these simple molecules as models in exploring photochemical and photophysical properties of more complex systems, like peptides and proteins, are emphasized. It is found that in all examined model molecules the major deactivation process after excitation to the S1 state is dissociation of the peptide C–N bond. The same holds for the deactivation path from the S2 state, with exception of the O- protonated formamide in which C–O dissociation becomes the major deactivation process. Furthermore, it is shown that substitution by the methyl group(s), as well as protonation, strongly influence the lifetime of both excited states. In the last section application of the newly developed hybrid nonadiabatic photodynamics QM/MM approach in calculating photodissociation of formamide in argon matrix is illustrated.

Original languageEnglish
Title of host publicationChallenges and Advances in Computational Chemistry and Physics
Number of pages30
StatePublished - 2010

Publication series

NameChallenges and Advances in Computational Chemistry and Physics
ISSN (Print)2542-4491
ISSN (Electronic)2542-4483


  • Environmental effects
  • Excited state
  • Formamide
  • Nonadiabatic dynamics
  • Peptide bond
  • Photodissociation
  • QM/MM
  • Substituted formamides
  • Surface hopping


Dive into the research topics of 'Formamide as the Model Compound for Photodissociation Studies of the Peptide Bond'. Together they form a unique fingerprint.

Cite this