Abstract
The low-energy wing of the C∼B21←X∼1A1 absorption spectra for SO2 in the ultraviolet region is computed for the 32S,33S,34S and 36S isotopes, using the recently developed ab initio potential energy surfaces (PESs) of the two electronic states and the corresponding transition dipole surface. The state-resolved absorption spectra from various ro-vibrational states of SO2(X∼1A1) are computed. When contributions of these excited ro-vibrational states are included, the thermally averaged spectra are broadened but maintain their key characters. Excellent agreement with experimental absorption spectra is found, validating the accuracy of the PESs. The isotope shifts of the absorption peaks are found to increase linearly with energy, in good agreement with experiment.
Original language | English |
---|---|
Article number | 154305 |
Journal | Journal of Chemical Physics |
Volume | 146 |
Issue number | 15 |
DOIs | |
State | Published - Apr 21 2017 |