Fast-charging compact seed source for magnetic flux compression generators

M. Elsayed, M. Kristiansen, A. Neuber

Research output: Contribution to journalArticlepeer-review

16 Scopus citations


Flux compression generators (FCGs) are some of the most attractive sources of single-use compact pulsed power available today due to their high energy density output and mobility. Driving FCGs requires some seed energy, which is typically provided by applying a high seed current, usually in the kiloampere range for midsized helical FCGs. This initial current is supplied by a high-current seed source that is capable of driving an inductive load. High-current seed sources have typically been comprised of discharging large capacitors using spark gaps and overvoltage triggering mechanisms to provide the prime power for FCGs. This paper will discuss a recent design of a self-contained (battery powered with full charge time less than 40 s), single-use compact seed source (CSS) using solid-state components for the switching scheme. The CSS developed is a system (0.005 m3 volume and weighing 3.9 kg) capable of delivering over 360 J (∼12 kA) into a 5.20 μH load with a trigger energy of microjoules at the TTL triggering level. The newly designed solid-state switching scheme of the CSS incorporates off-the-shelf high-voltage semiconductor components that minimize system cost and size as necessary for a single-use application. A detailed evaluation of the CSS is presented primarily focusing on the switching mechanics and experimental characterization of the solid-state components used in the system.

Original languageEnglish
Article number124702
JournalReview of Scientific Instruments
Issue number12
StatePublished - 2008


Dive into the research topics of 'Fast-charging compact seed source for magnetic flux compression generators'. Together they form a unique fingerprint.

Cite this