Extending gaussian hypergeometric series to the p-adic setting

Research output: Contribution to journalArticlepeer-review

26 Scopus citations


We define a function which extends Gaussian hypergeometric series to the p-adic setting. This new function allows results involving Gaussian hypergeometric series to be extended to a wider class of primes. We demonstrate this by providing various congruences between the function and truncated classical hypergeometric series. These congruences provide a framework for proving the supercongruence conjectures of Rodriguez-Villegas.

Original languageEnglish
Pages (from-to)1581-1612
Number of pages32
JournalInternational Journal of Number Theory
Issue number7
StatePublished - Nov 2012


  • Gaussian hypergeometric series
  • generalized hypergeometric series
  • hypergeometric functions over finite fields
  • p-adic gamma function
  • supercongruence


Dive into the research topics of 'Extending gaussian hypergeometric series to the p-adic setting'. Together they form a unique fingerprint.

Cite this