Excited-state potential energy surfaces of silaethylene: A MRCI investigation

M. Pitonak, H. Lischka

Research output: Contribution to journalArticlepeer-review

7 Scopus citations

Abstract

Extended MR-CISD calculations have been performed for vertical electronic excitations and for excited-state energy surfaces of silaethylene. Stationary points and conical intersections have been determined using recently developed analytic MR-CI gradients and non-adiabatic coupling terms. The calculations show that in vertical excitations the ππ* (V) state is the lowest excited singlet state. The torsion around the CSi bond is the dominant stabilizing factor, as in the case of ethylene. However, in marked contrast to ethylene this torsion leads directly to a conical intersection with the ground state. CH2 and SiH2 pyramidalization and hydrogen migration pathways also have been investigated. Both modes are not expected to play a significant role concerning the excited-state lifetime of silaethylene.

Original languageEnglish
Pages (from-to)855-862
Number of pages8
JournalMolecular Physics
Volume103
Issue number6-8
DOIs
StatePublished - Mar 20 2005

Fingerprint

Dive into the research topics of 'Excited-state potential energy surfaces of silaethylene: A MRCI investigation'. Together they form a unique fingerprint.

Cite this