Evaluate EOR potential in fractured shale oil reservoirs by cyclic gas injection

Tao Wan, James J. Sheng, M. Y. Soliman

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

58 Scopus citations

Abstract

The current technique to produce shale oil is to use horizontal wells with multi-stage stimulation. However, the primary oil recovery factor is only a few percent. The low recovery and the abundance of shale reservoirs provide a huge potential for enhanced oil recovery. Well productivity in shale oil and gas reservoirs primarily depends upon the size of fracture network and the stimulated reservoir volume (SRV) which provides highly conductive conduits to communicate the matrix with the wellbore. The natural fracture complexity is critical to the well production performance and it also provides an avenue for injected fluids to displace the oils. However, the disadvantage of flooding in fractured reservoirs is that the injected fluids may break through to production wells via the fracture network. Therefore, a preferred method is to use cyclic gas injection to overcome this problem. In this paper, we use a numerical simulation approach to evaluate the EOR potential in fractured shale oil reservoirs by cyclic gas injection. Simulation results indicate that the stimulated fracture network contributes significantly to the well productivity via its large contact volume with the matrix, which prominently enhances the macroscopic sweep efficiency in secondary cyclic gas injection. In our previous simulation work, the EOR potential was evaluated from planar traverse fractures. In this paper, we examine the EOR potential by including the effect of fracture networks. Therefore, a higher oil recovery potential is demonstrated. The impacts of fracture spacing density and stress dependent fracture conductivity on the ultimate oil recovery are also investigated. In a case where the fracture network spacing is 100 ft and the fracture network is 100% stimulated, it can achieve more than 60% of incremental oil recovery. The results presented in this paper demonstrate an EOR potential by cyclic gas injection in fractured shale oil reservoirs.

Original languageEnglish
Title of host publicationUnconventional Resources Technology Conference 2013, URTC 2013
PublisherUnconventional Resources Technology Conference (URTEC)
ISBN (Print)9781613993026
StatePublished - Jan 1 2013
EventUnconventional Resources Technology Conference 2013, URTC 2013 - Denver, United States
Duration: Aug 12 2013Aug 14 2013

Publication series

NameUnconventional Resources Technology Conference 2013, URTC 2013

Conference

ConferenceUnconventional Resources Technology Conference 2013, URTC 2013
Country/TerritoryUnited States
CityDenver
Period08/12/1308/14/13

Fingerprint

Dive into the research topics of 'Evaluate EOR potential in fractured shale oil reservoirs by cyclic gas injection'. Together they form a unique fingerprint.

Cite this